affilgood-span-v2 / README.md
nicolauduran45's picture
Update README.md
b9bd3ba verified
---
library_name: transformers
license: apache-2.0
base_model: SIRIS-Lab/affilgood-affilroberta
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# affilgood-span-v2
This model is a fine-tuned version of [SIRIS-Lab/affilgood-affilroberta](https://huggingface.co/SIRIS-Lab/affilgood-affilroberta) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2360
- Precision: 0.8321
- Recall: 0.8934
- F1: 0.8617
- Accuracy: 0.9612
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 93 | 0.1532 | 0.7861 | 0.8333 | 0.8090 | 0.9567 |
| No log | 2.0 | 186 | 0.1135 | 0.8404 | 0.8634 | 0.8518 | 0.9610 |
| No log | 3.0 | 279 | 0.1021 | 0.8333 | 0.9016 | 0.8661 | 0.9682 |
| No log | 4.0 | 372 | 0.1183 | 0.8182 | 0.8852 | 0.8504 | 0.9673 |
| No log | 5.0 | 465 | 0.1377 | 0.8564 | 0.8962 | 0.8758 | 0.9685 |
| 0.0987 | 6.0 | 558 | 0.1296 | 0.8575 | 0.9044 | 0.8803 | 0.9682 |
| 0.0987 | 7.0 | 651 | 0.1568 | 0.8583 | 0.8934 | 0.8755 | 0.9685 |
| 0.0987 | 8.0 | 744 | 0.2092 | 0.8575 | 0.8880 | 0.8725 | 0.9649 |
| 0.0987 | 9.0 | 837 | 0.2360 | 0.8321 | 0.8934 | 0.8617 | 0.9612 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.0.2
- Tokenizers 0.19.1