tags: | |
- autotrain | |
- tabular | |
- regression | |
- tabular-regression | |
datasets: | |
- nicoler229/autotrain-data-renp-vcyx-5hff | |
# Model Trained Using AutoTrain | |
- Problem type: Tabular regression | |
## Validation Metrics | |
- r2: 0.8987710422047952 | |
- mse: 15.386801584871137 | |
- mae: 3.1008129119873047 | |
- rmse: 3.9226013798079378 | |
- rmsle: 0.049014949862444 | |
- loss: 3.9226013798079378 | |
## Best Params | |
- learning_rate: 0.09858308825036341 | |
- reg_lambda: 1.7244892825164977e-06 | |
- reg_alpha: 0.004880162297132929 | |
- subsample: 0.5918267532876357 | |
- colsample_bytree: 0.6228647593929555 | |
- max_depth: 8 | |
- early_stopping_rounds: 440 | |
- n_estimators: 7000 | |
- eval_metric: rmse | |
## Usage | |
```python | |
import json | |
import joblib | |
import pandas as pd | |
model = joblib.load('model.joblib') | |
config = json.load(open('config.json')) | |
features = config['features'] | |
# data = pd.read_csv("data.csv") | |
data = data[features] | |
predictions = model.predict(data) # or model.predict_proba(data) | |
# predictions can be converted to original labels using label_encoders.pkl | |
``` | |