SetFit with sentence-transformers/all-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/all-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 384 tokens
- Number of Classes: 3 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
question |
|
feature |
|
bug |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("Data init API for TFLite Swift <details><summary>Click to expand!</summary>
### Issue Type
Feature Request
### Source
source
### Tensorflow Version
2.8+
### Custom Code
No
### OS Platform and Distribution
_No response_
### Mobile device
_No response_
### Python version
_No response_
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
```shell
The current Swift API only has `init` functions from files on disk unlike the Java (Android) API which has a byte buffer initializer. It'd be convenient if the Swift API could initialize `Interpreters` from `Data`.
Standalone code to reproduce the issue
No code. This is a feature request
Relevant log output
No response")
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:---------|:-----|
| Word count | 5 | 353.7433 | 6124 |
| Label | Training Sample Count |
|:---------|:----------------------|
| bug | 200 |
| feature | 200 |
| question | 200 |
### Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0007 | 1 | 0.1719 | - |
| 0.0067 | 10 | 0.2869 | - |
| 0.0133 | 20 | 0.2513 | - |
| 0.02 | 30 | 0.1871 | - |
| 0.0267 | 40 | 0.2065 | - |
| 0.0333 | 50 | 0.2302 | - |
| 0.04 | 60 | 0.1645 | - |
| 0.0467 | 70 | 0.1887 | - |
| 0.0533 | 80 | 0.1376 | - |
| 0.06 | 90 | 0.1171 | - |
| 0.0667 | 100 | 0.1303 | - |
| 0.0733 | 110 | 0.121 | - |
| 0.08 | 120 | 0.1126 | - |
| 0.0867 | 130 | 0.1247 | - |
| 0.0933 | 140 | 0.1764 | - |
| 0.1 | 150 | 0.0401 | - |
| 0.1067 | 160 | 0.1571 | - |
| 0.1133 | 170 | 0.0186 | - |
| 0.12 | 180 | 0.0501 | - |
| 0.1267 | 190 | 0.1003 | - |
| 0.1333 | 200 | 0.0152 | - |
| 0.14 | 210 | 0.0784 | - |
| 0.1467 | 220 | 0.1423 | - |
| 0.1533 | 230 | 0.1313 | - |
| 0.16 | 240 | 0.0799 | - |
| 0.1667 | 250 | 0.0542 | - |
| 0.1733 | 260 | 0.0426 | - |
| 0.18 | 270 | 0.047 | - |
| 0.1867 | 280 | 0.0062 | - |
| 0.1933 | 290 | 0.0085 | - |
| 0.2 | 300 | 0.0625 | - |
| 0.2067 | 310 | 0.095 | - |
| 0.2133 | 320 | 0.0262 | - |
| 0.22 | 330 | 0.0029 | - |
| 0.2267 | 340 | 0.0097 | - |
| 0.2333 | 350 | 0.063 | - |
| 0.24 | 360 | 0.0059 | - |
| 0.2467 | 370 | 0.0016 | - |
| 0.2533 | 380 | 0.0025 | - |
| 0.26 | 390 | 0.0033 | - |
| 0.2667 | 400 | 0.0006 | - |
| 0.2733 | 410 | 0.0032 | - |
| 0.28 | 420 | 0.0045 | - |
| 0.2867 | 430 | 0.0013 | - |
| 0.2933 | 440 | 0.0011 | - |
| 0.3 | 450 | 0.001 | - |
| 0.3067 | 460 | 0.0044 | - |
| 0.3133 | 470 | 0.001 | - |
| 0.32 | 480 | 0.0009 | - |
| 0.3267 | 490 | 0.0004 | - |
| 0.3333 | 500 | 0.0006 | - |
| 0.34 | 510 | 0.001 | - |
| 0.3467 | 520 | 0.0003 | - |
| 0.3533 | 530 | 0.0008 | - |
| 0.36 | 540 | 0.0003 | - |
| 0.3667 | 550 | 0.0023 | - |
| 0.3733 | 560 | 0.0336 | - |
| 0.38 | 570 | 0.0004 | - |
| 0.3867 | 580 | 0.0003 | - |
| 0.3933 | 590 | 0.0006 | - |
| 0.4 | 600 | 0.0008 | - |
| 0.4067 | 610 | 0.0011 | - |
| 0.4133 | 620 | 0.0002 | - |
| 0.42 | 630 | 0.0004 | - |
| 0.4267 | 640 | 0.0005 | - |
| 0.4333 | 650 | 0.0601 | - |
| 0.44 | 660 | 0.0003 | - |
| 0.4467 | 670 | 0.0003 | - |
| 0.4533 | 680 | 0.0006 | - |
| 0.46 | 690 | 0.0005 | - |
| 0.4667 | 700 | 0.0003 | - |
| 0.4733 | 710 | 0.0006 | - |
| 0.48 | 720 | 0.0001 | - |
| 0.4867 | 730 | 0.0002 | - |
| 0.4933 | 740 | 0.0002 | - |
| 0.5 | 750 | 0.0002 | - |
| 0.5067 | 760 | 0.0002 | - |
| 0.5133 | 770 | 0.0016 | - |
| 0.52 | 780 | 0.0001 | - |
| 0.5267 | 790 | 0.0005 | - |
| 0.5333 | 800 | 0.0004 | - |
| 0.54 | 810 | 0.0039 | - |
| 0.5467 | 820 | 0.0031 | - |
| 0.5533 | 830 | 0.0008 | - |
| 0.56 | 840 | 0.0003 | - |
| 0.5667 | 850 | 0.0002 | - |
| 0.5733 | 860 | 0.0002 | - |
| 0.58 | 870 | 0.0002 | - |
| 0.5867 | 880 | 0.0001 | - |
| 0.5933 | 890 | 0.0004 | - |
| 0.6 | 900 | 0.0002 | - |
| 0.6067 | 910 | 0.0008 | - |
| 0.6133 | 920 | 0.0005 | - |
| 0.62 | 930 | 0.0005 | - |
| 0.6267 | 940 | 0.0002 | - |
| 0.6333 | 950 | 0.0001 | - |
| 0.64 | 960 | 0.0002 | - |
| 0.6467 | 970 | 0.0007 | - |
| 0.6533 | 980 | 0.0002 | - |
| 0.66 | 990 | 0.0002 | - |
| 0.6667 | 1000 | 0.0002 | - |
| 0.6733 | 1010 | 0.0002 | - |
| 0.68 | 1020 | 0.0002 | - |
| 0.6867 | 1030 | 0.0002 | - |
| 0.6933 | 1040 | 0.0004 | - |
| 0.7 | 1050 | 0.0076 | - |
| 0.7067 | 1060 | 0.0002 | - |
| 0.7133 | 1070 | 0.0002 | - |
| 0.72 | 1080 | 0.0001 | - |
| 0.7267 | 1090 | 0.0002 | - |
| 0.7333 | 1100 | 0.0001 | - |
| 0.74 | 1110 | 0.0365 | - |
| 0.7467 | 1120 | 0.0002 | - |
| 0.7533 | 1130 | 0.0002 | - |
| 0.76 | 1140 | 0.0003 | - |
| 0.7667 | 1150 | 0.0002 | - |
| 0.7733 | 1160 | 0.0002 | - |
| 0.78 | 1170 | 0.0004 | - |
| 0.7867 | 1180 | 0.0001 | - |
| 0.7933 | 1190 | 0.0001 | - |
| 0.8 | 1200 | 0.0001 | - |
| 0.8067 | 1210 | 0.0001 | - |
| 0.8133 | 1220 | 0.0002 | - |
| 0.82 | 1230 | 0.0002 | - |
| 0.8267 | 1240 | 0.0001 | - |
| 0.8333 | 1250 | 0.0001 | - |
| 0.84 | 1260 | 0.0002 | - |
| 0.8467 | 1270 | 0.0002 | - |
| 0.8533 | 1280 | 0.0 | - |
| 0.86 | 1290 | 0.0002 | - |
| 0.8667 | 1300 | 0.032 | - |
| 0.8733 | 1310 | 0.0001 | - |
| 0.88 | 1320 | 0.0001 | - |
| 0.8867 | 1330 | 0.0001 | - |
| 0.8933 | 1340 | 0.0003 | - |
| 0.9 | 1350 | 0.0001 | - |
| 0.9067 | 1360 | 0.0001 | - |
| 0.9133 | 1370 | 0.0001 | - |
| 0.92 | 1380 | 0.0001 | - |
| 0.9267 | 1390 | 0.0001 | - |
| 0.9333 | 1400 | 0.0001 | - |
| 0.94 | 1410 | 0.0001 | - |
| 0.9467 | 1420 | 0.0001 | - |
| 0.9533 | 1430 | 0.031 | - |
| 0.96 | 1440 | 0.0001 | - |
| 0.9667 | 1450 | 0.0003 | - |
| 0.9733 | 1460 | 0.0001 | - |
| 0.98 | 1470 | 0.0001 | - |
| 0.9867 | 1480 | 0.0001 | - |
| 0.9933 | 1490 | 0.0001 | - |
| 1.0 | 1500 | 0.0001 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.39.0
- PyTorch: 2.3.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.15.2
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for nilcars/tensorflow_tensorflow_model
Base model
sentence-transformers/all-mpnet-base-v2