whisper-ckm-3 / README.md
ninninz's picture
ninninz/whisper-large-v3-croatian-v2
c62effd
metadata
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - wer
model-index:
  - name: whisper-large-v3-croarian-v2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: train
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 56.793692509855454

whisper-large-v3-croarian-v2

This model is a fine-tuned version of openai/whisper-large-v3 on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1863
  • Wer: 56.7937

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0163 22.73 1000 1.7344 61.5900
0.0007 45.45 2000 2.0005 56.4520
0.0002 68.18 3000 2.1566 59.7635
0.0002 90.91 4000 2.1863 56.7937

Framework versions

  • Transformers 4.36.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0