Edit model card

Mistral-7B-Instruct-v0.2-advisegpt-v0.6

This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0767
  • Bleu: {'bleu': 0.9584832765902116, 'precisions': [0.9778312591422885, 0.9625878953932084, 0.9518774970032065, 0.9430684559898991], 'brevity_penalty': 0.9997177244264667, 'length_ratio': 0.9997177642587203, 'translation_length': 1289338, 'reference_length': 1289702}
  • Rouge: {'rouge1': 0.9761023152523122, 'rouge2': 0.9590922549283836, 'rougeL': 0.9747297976860183, 'rougeLsum': 0.9758442544146716}
  • Exact Match: {'exact_match': 0.0}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 3
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 10
  • total_train_batch_size: 30
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Rouge Exact Match
0.067 0.9998 809 0.0945 {'bleu': 0.9492918853166353, 'precisions': [0.9733554685833311, 0.9543042005762523, 0.9412361771045687, 0.9307382413966919], 'brevity_penalty': 0.9994904502180469, 'length_ratio': 0.9994905799944483, 'translation_length': 1289045, 'reference_length': 1289702} {'rouge1': 0.9712558044405124, 'rouge2': 0.9500703853191179, 'rougeL': 0.9690578078497468, 'rougeLsum': 0.9708044674114953} {'exact_match': 0.0}
0.0527 1.9995 1618 0.0779 {'bleu': 0.9568445996007577, 'precisions': [0.977026202258449, 0.961055539100332, 0.9498195483213825, 0.9405540074014527], 'brevity_penalty': 0.9998193217903225, 'length_ratio': 0.9998193381106644, 'translation_length': 1289469, 'reference_length': 1289702} {'rouge1': 0.9753094821779227, 'rouge2': 0.9574822736836266, 'rougeL': 0.9737984768450723, 'rougeLsum': 0.9750220632065946} {'exact_match': 0.0}
0.0471 2.9993 2427 0.0767 {'bleu': 0.9584832765902116, 'precisions': [0.9778312591422885, 0.9625878953932084, 0.9518774970032065, 0.9430684559898991], 'brevity_penalty': 0.9997177244264667, 'length_ratio': 0.9997177642587203, 'translation_length': 1289338, 'reference_length': 1289702} {'rouge1': 0.9761023152523122, 'rouge2': 0.9590922549283836, 'rougeL': 0.9747297976860183, 'rougeLsum': 0.9758442544146716} {'exact_match': 0.0}

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
3
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for ninyx/Mistral-7B-Instruct-v0.2-advisegpt-v0.6

Adapter
(885)
this model