layoutlm-funsd
This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:
- Loss: 0.7107
- Answer: {'precision': 0.696078431372549, 'recall': 0.7898640296662547, 'f1': 0.740011580775912, 'number': 809}
- Header: {'precision': 0.3333333333333333, 'recall': 0.3277310924369748, 'f1': 0.3305084745762712, 'number': 119}
- Question: {'precision': 0.7799827437446074, 'recall': 0.8488262910798122, 'f1': 0.8129496402877696, 'number': 1065}
- Overall Precision: 0.7211
- Overall Recall: 0.7938
- Overall F1: 0.7557
- Overall Accuracy: 0.8008
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|
1.8202 | 1.0 | 10 | 1.5835 | {'precision': 0.025120772946859903, 'recall': 0.032138442521631644, 'f1': 0.028199566160520606, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.20365535248041775, 'recall': 0.21971830985915494, 'f1': 0.2113821138211382, 'number': 1065} | 0.1190 | 0.1305 | 0.1245 | 0.3882 |
1.4316 | 2.0 | 20 | 1.2683 | {'precision': 0.16164383561643836, 'recall': 0.14585908529048208, 'f1': 0.1533463287849253, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4461190655614167, 'recall': 0.5558685446009389, 'f1': 0.49498327759197325, 'number': 1065} | 0.3452 | 0.3562 | 0.3506 | 0.5544 |
1.1076 | 3.0 | 30 | 0.9812 | {'precision': 0.44790547798066593, 'recall': 0.515451174289246, 'f1': 0.4793103448275862, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5667215815485996, 'recall': 0.6460093896713615, 'f1': 0.6037735849056605, 'number': 1065} | 0.5087 | 0.5544 | 0.5306 | 0.6776 |
0.845 | 4.0 | 40 | 0.8144 | {'precision': 0.5346083788706739, 'recall': 0.7255871446229913, 'f1': 0.615626638699528, 'number': 809} | {'precision': 0.029411764705882353, 'recall': 0.01680672268907563, 'f1': 0.021390374331550797, 'number': 119} | {'precision': 0.6285482562854826, 'recall': 0.7276995305164319, 'f1': 0.6744995648389904, 'number': 1065} | 0.5686 | 0.6844 | 0.6211 | 0.7435 |
0.6785 | 5.0 | 50 | 0.7277 | {'precision': 0.6069651741293532, 'recall': 0.754017305315204, 'f1': 0.6725468577728776, 'number': 809} | {'precision': 0.29850746268656714, 'recall': 0.16806722689075632, 'f1': 0.21505376344086022, 'number': 119} | {'precision': 0.6952296819787986, 'recall': 0.7389671361502348, 'f1': 0.7164314974965864, 'number': 1065} | 0.6429 | 0.7110 | 0.6752 | 0.7748 |
0.5677 | 6.0 | 60 | 0.6958 | {'precision': 0.6477987421383647, 'recall': 0.7639060568603214, 'f1': 0.7010777084515031, 'number': 809} | {'precision': 0.29347826086956524, 'recall': 0.226890756302521, 'f1': 0.2559241706161137, 'number': 119} | {'precision': 0.7031375703942075, 'recall': 0.8206572769953052, 'f1': 0.7573656845753899, 'number': 1065} | 0.6636 | 0.7622 | 0.7095 | 0.7865 |
0.4873 | 7.0 | 70 | 0.6717 | {'precision': 0.6487046632124353, 'recall': 0.7737948084054388, 'f1': 0.705749718151071, 'number': 809} | {'precision': 0.31313131313131315, 'recall': 0.2605042016806723, 'f1': 0.28440366972477066, 'number': 119} | {'precision': 0.7402707275803723, 'recall': 0.8215962441314554, 'f1': 0.778816199376947, 'number': 1065} | 0.6821 | 0.7687 | 0.7228 | 0.7916 |
0.4374 | 8.0 | 80 | 0.6668 | {'precision': 0.6781115879828327, 'recall': 0.7812113720642769, 'f1': 0.7260195290063183, 'number': 809} | {'precision': 0.3173076923076923, 'recall': 0.2773109243697479, 'f1': 0.29596412556053814, 'number': 119} | {'precision': 0.743142144638404, 'recall': 0.8394366197183099, 'f1': 0.7883597883597885, 'number': 1065} | 0.6963 | 0.7822 | 0.7368 | 0.7951 |
0.3894 | 9.0 | 90 | 0.6763 | {'precision': 0.6646341463414634, 'recall': 0.8084054388133498, 'f1': 0.7295036252091467, 'number': 809} | {'precision': 0.3465346534653465, 'recall': 0.29411764705882354, 'f1': 0.3181818181818182, 'number': 119} | {'precision': 0.7589833479404031, 'recall': 0.8131455399061033, 'f1': 0.7851314596554851, 'number': 1065} | 0.6986 | 0.7802 | 0.7371 | 0.7977 |
0.3492 | 10.0 | 100 | 0.6727 | {'precision': 0.6944140197152245, 'recall': 0.7836835599505563, 'f1': 0.7363530778164925, 'number': 809} | {'precision': 0.32231404958677684, 'recall': 0.3277310924369748, 'f1': 0.32499999999999996, 'number': 119} | {'precision': 0.762350936967632, 'recall': 0.8403755868544601, 'f1': 0.7994640464493078, 'number': 1065} | 0.7101 | 0.7868 | 0.7465 | 0.7993 |
0.3166 | 11.0 | 110 | 0.6756 | {'precision': 0.6956055734190782, 'recall': 0.8022249690976514, 'f1': 0.7451205510907002, 'number': 809} | {'precision': 0.30833333333333335, 'recall': 0.31092436974789917, 'f1': 0.3096234309623431, 'number': 119} | {'precision': 0.7672047578589635, 'recall': 0.847887323943662, 'f1': 0.8055307760927745, 'number': 1065} | 0.7126 | 0.7973 | 0.7525 | 0.8022 |
0.2962 | 12.0 | 120 | 0.7018 | {'precision': 0.6983783783783784, 'recall': 0.7985166872682324, 'f1': 0.7450980392156863, 'number': 809} | {'precision': 0.32231404958677684, 'recall': 0.3277310924369748, 'f1': 0.32499999999999996, 'number': 119} | {'precision': 0.7716468590831919, 'recall': 0.8535211267605634, 'f1': 0.8105216228265715, 'number': 1065} | 0.7167 | 0.7998 | 0.7560 | 0.8007 |
0.2861 | 13.0 | 130 | 0.7136 | {'precision': 0.6987041036717062, 'recall': 0.799752781211372, 'f1': 0.745821325648415, 'number': 809} | {'precision': 0.3305084745762712, 'recall': 0.3277310924369748, 'f1': 0.32911392405063294, 'number': 119} | {'precision': 0.7859007832898173, 'recall': 0.847887323943662, 'f1': 0.8157181571815718, 'number': 1065} | 0.7246 | 0.7973 | 0.7592 | 0.8021 |
0.2685 | 14.0 | 140 | 0.7143 | {'precision': 0.6964091403699674, 'recall': 0.7911001236093943, 'f1': 0.7407407407407407, 'number': 809} | {'precision': 0.325, 'recall': 0.3277310924369748, 'f1': 0.3263598326359833, 'number': 119} | {'precision': 0.7802768166089965, 'recall': 0.8469483568075117, 'f1': 0.8122467357046375, 'number': 1065} | 0.7203 | 0.7933 | 0.7550 | 0.8003 |
0.2625 | 15.0 | 150 | 0.7107 | {'precision': 0.696078431372549, 'recall': 0.7898640296662547, 'f1': 0.740011580775912, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.3277310924369748, 'f1': 0.3305084745762712, 'number': 119} | {'precision': 0.7799827437446074, 'recall': 0.8488262910798122, 'f1': 0.8129496402877696, 'number': 1065} | 0.7211 | 0.7938 | 0.7557 | 0.8008 |
Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
- Downloads last month
- 77
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for nishthaahuja25/layoutlm-funsd
Base model
microsoft/layoutlm-base-uncased