layoutlmv3-finetuned-intellectai

This model is a fine-tuned version of microsoft/layoutlmv3-base on the invoice_layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3645
  • Precision: 0.7054
  • Recall: 0.8541
  • F1: 0.7726
  • Accuracy: 0.9625

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.79 50 1.7979 0.0228 0.0541 0.0321 0.1410
No log 1.59 100 1.2400 0.0863 0.4216 0.1433 0.2616
No log 2.38 150 0.8691 0.1279 0.6919 0.2159 0.4495
No log 3.17 200 0.6001 0.2323 0.8162 0.3617 0.7570
No log 3.97 250 0.4709 0.4660 0.7784 0.5830 0.9093
No log 4.76 300 0.3986 0.5977 0.8270 0.6939 0.9472
No log 5.56 350 0.3762 0.5714 0.8216 0.6741 0.9454
No log 6.35 400 0.3763 0.7048 0.8649 0.7767 0.9636
No log 7.14 450 0.3696 0.6639 0.8541 0.7470 0.9570
0.71 7.94 500 0.3645 0.7054 0.8541 0.7726 0.9625

Framework versions

  • Transformers 4.27.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
38
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results