Edit model card

Swallow-70b-RP-EX

Important Notice:

For personal and academic use only.

This is a merge of vocabulary expansion models, so tokenizer.model is not included. Users who want to convert to GGUL/GGML should be careful.

Description

This model is suitable for role-playing and storytelling, and has great multi-turn chat capabilities. This is probably due to the extremely high multi-turn chat performance of karakuri-ai/karakuri-lm-70b-chat-v0.1. Thank you for providing such a wonderful model.

This was created for personal and academic use only. This merge model uses only fine-tune models of Llama2, but some of the models used include those whose licenses for commercial use are unclear.

If there is a license problem, the rights holder should contact me directly. No license changes will be made due to contact from others.

In particular, karakuri-ai/karakuri-lm-70b-chat-v0.1 is currently distributed under cc-by-sa-4.0, and licensing discussions are taking place here. Since I am not a legal expert, I decided this license according to theirs.

Test environment

This model was tested using text-generation-webui. I use preset simple-1 and Null preset for Generation.

Recommendation

Use Null preset and modified temperature settings:

  • temperature: 0.3
  • top_p: 1.0
  • repetition_penalty: 1.0
  • top_k: 0

As a result of testing, lower temperature and smaller top_k may give better outputs.

Tested temperature Range

  • temperature: 0.3 - 1.0

Tested repetition_penalty Range

  • repetition_penalty: 1.0 - 1.15

Prompt template

Swallow Style (Alpaca format)

以下に、あるタスクを説明する指示があり、それに付随する入力が更なる文脈を提供しています。リクエストを適切に完了するための回答を記述してください。

### 指示:
{instruction}

### 応答:

Although not fully tested, karakuri-ai/karakuri-lm-70b-chat-v0.1, Doctor-Shotgun/lzlv-limarpv3-l2-70b and alac/Waxwing-Storytelling-70B-LoRA prompt styles are also available.

Use the instruct model

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

model_name = "nitky/Swallow-70b-RP-EX"

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, device_map="auto", load_in_4bit = True)


PROMPT_DICT = {
    "prompt_input": (
        "以下に、あるタスクを説明する指示があり、それに付随する入力が更なる文脈を提供しています。"
        "リクエストを適切に完了するための回答を記述してください。\n\n"
        "### 指示:\n{instruction}\n\n### 入力:\n{input}\n\n### 応答:"

    ),
    "prompt_no_input": (
        "以下に、あるタスクを説明する指示があります。"
        "リクエストを適切に完了するための回答を記述してください。\n\n"
        "### 指示:\n{instruction}\n\n### 応答:"
    ),
}

def create_prompt(instruction, input=None):
    """
    Generates a prompt based on the given instruction and an optional input.
    If input is provided, it uses the 'prompt_input' template from PROMPT_DICT.
    If no input is provided, it uses the 'prompt_no_input' template.

    Args:
        instruction (str): The instruction describing the task.
        input (str, optional): Additional input providing context for the task. Default is None.

    Returns:
        str: The generated prompt.
    """
    if input:
        # Use the 'prompt_input' template when additional input is provided
        return PROMPT_DICT["prompt_input"].format(instruction=instruction, input=input)
    else:
        # Use the 'prompt_no_input' template when no additional input is provided
        return PROMPT_DICT["prompt_no_input"].format(instruction=instruction)

# Example usage
instruction_example = "以下のトピックに関する詳細な情報を提供してください。"
input_example = "東京工業大学の主なキャンパスについて教えてください"
prompt = create_prompt(instruction_example, input_example)

input_ids = tokenizer.encode(
    prompt,
    add_special_tokens=False,
    return_tensors="pt"
)

tokens = model.generate(
    input_ids.to(device=model.device),
    max_new_tokens=200,
    temperature=0.3,
    do_sample=True,
)

out = tokenizer.decode(tokens[0], skip_special_tokens=True)
print(out)

Merge Details

Merge Method

This model was merged using the DARE TIES and the SLERP merge method using tokyotech-llm/Swallow-70b-instruct-hf as a base.

Models Merged

The following models were included in the merge:

Configuration

Command example:

# please change the path and options according to your environment
mergekit-mega --cuda Swallow-70b-RP-EX.yml ~/text-generation-webui/models

The following YAML configuration was used to produce this model:

models:
  - model: nitky/Swallow-70b-RP
    # no parameters necessary for base model
  - model: karakuri-ai/karakuri-lm-70b-chat-v0.1
    parameters:
      density: 1
      weight:
      - filter: mlp
        value: 0.1
      - filter: self_attn
        value: 0.4
      - value: 0 # fallback for rest of tensors.
merge_method: dare_ties
base_model: nitky/Swallow-70b-RP
dtype: bfloat16
tokenizer_source: union
name: Swallow-70b-RP-EX-base
---
models:
  - model: nitky/Swallow-70b-RP
    # no parameters necessary for base model
  - model: karakuri-ai/karakuri-lm-70b-chat-v0.1
    parameters:
      density: 1
      weight:
      - filter: mlp
        value: [0.4, 0.1, 0.4, 0.1, 0.4, 0.1, 0.4, 0.1, 0.1]
      - filter: self_attn
        value: [0.4, 0.4, 0.1, 0.4, 0.1, 0.4, 0.1, 0.4, 0.4]
      - value: 0 # fallback for rest of tensors.
merge_method: dare_ties
base_model: nitky/Swallow-70b-RP
dtype: bfloat16
tokenizer_source: union
name: Swallow-70b-RP-EX-flavor
---
slices:
  - sources:
      - model: Swallow-70b-RP-EX-base
        layer_range: [0, 80]
      - model: Swallow-70b-RP-EX-flavor
        layer_range: [0, 80]
merge_method: slerp
base_model: Swallow-70b-RP-EX-base
parameters:
  t: # model stabilization
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5 # fallback for rest of tensors
dtype: bfloat16
name: Swallow-70b-RP-EX
Downloads last month
13
Safetensors
Model size
69.3B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for nitky/Swallow-70b-RP-EX