See axolotl config
axolotl version: 0.3.0
base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
hub_model_id: nitsw/mistral_axonotll
datasets:
- path: nitsw/alpaca_cleaned
type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./qlora-out
adapter: qlora
lora_model_dir:
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project: swapnil_axolotl
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
# evals_per_epoch: 4
eval_steps: 10
eval_table_size:
eval_table_max_new_tokens: 128
# saves_per_epoch: 1
save_steps: 10
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
mistral_axonotll
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8484
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.8523 | 0.06 | 10 | 0.8987 |
0.8882 | 0.13 | 20 | 0.8766 |
0.8374 | 0.19 | 30 | 0.8683 |
0.8223 | 0.25 | 40 | 0.8636 |
0.85 | 0.32 | 50 | 0.8604 |
0.8425 | 0.38 | 60 | 0.8577 |
0.8572 | 0.44 | 70 | 0.8560 |
0.8427 | 0.51 | 80 | 0.8539 |
0.8627 | 0.57 | 90 | 0.8526 |
0.8242 | 0.63 | 100 | 0.8512 |
0.8555 | 0.7 | 110 | 0.8501 |
0.8348 | 0.76 | 120 | 0.8495 |
0.8593 | 0.83 | 130 | 0.8488 |
0.8403 | 0.89 | 140 | 0.8485 |
0.8628 | 0.95 | 150 | 0.8484 |
Framework versions
- PEFT 0.7.2.dev0
- Transformers 4.38.0.dev0
- Pytorch 2.0.1
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 2
Model tree for nitsw/mistral_axonotll
Base model
mistralai/Mistral-7B-v0.1