Whisper Large v3 - Japanese Zatoichi ASR

This model is a fine-tuned version of openai/whisper-large-v3 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7883
  • Wer: 75.7101

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Wer
0.9789 0.0382 5 1.0693 96.0870
1.1283 0.0763 10 0.9586 91.7101
0.7806 0.1145 15 0.8366 111.1884
0.8674 0.1527 20 0.7455 104.8696
0.7825 0.1908 25 0.6720 88.5797
0.6831 0.2290 30 0.6501 82.2609
0.6509 0.2672 35 0.6076 78.0580
0.5506 0.3053 40 0.6019 85.9420
0.4806 0.3435 45 0.5971 88.9855
0.5241 0.3817 50 0.5778 83.2174
0.5247 0.4198 55 0.5859 90.0290
0.4202 0.4580 60 0.5822 85.9420
0.4054 0.4962 65 0.5678 76.6667
0.4655 0.5344 70 0.5889 90.4928
0.3275 0.5725 75 0.5625 76.7536
0.3979 0.6107 80 0.5826 86.6377
0.3904 0.6489 85 0.5543 75.0145
0.3719 0.6870 90 0.5691 84.8696
0.4087 0.7252 95 0.5470 78.4638
0.3276 0.7634 100 0.5540 79.6522
0.2817 0.8015 105 0.5526 87.6522
0.3434 0.8397 110 0.5553 80.0870
0.3615 0.8779 115 0.5522 80.4058
0.3366 0.9160 120 0.5464 82.2609
0.4001 0.9542 125 0.5485 73.5652
0.3078 0.9924 130 0.5611 76.7246
0.1942 1.0305 135 0.5730 74.9275
0.2897 1.0687 140 0.6015 81.2464
0.1861 1.1069 145 0.5781 76.6377
0.1762 1.1450 150 0.5806 84.0290
0.1342 1.1832 155 0.5722 74.2319
0.169 1.2214 160 0.5795 76.5217
0.1453 1.2595 165 0.5867 77.4493
0.1495 1.2977 170 0.5946 77.5652
0.1588 1.3359 175 0.5988 75.4493
0.2011 1.3740 180 0.5979 80.8116
0.1579 1.4122 185 0.5853 80.0290
0.1805 1.4504 190 0.6044 80.4348
0.1865 1.4885 195 0.5941 77.4493
0.1783 1.5267 200 0.5965 79.7101
0.1348 1.5649 205 0.5967 78.8406
0.198 1.6031 210 0.5937 79.3333
0.126 1.6412 215 0.5998 81.0145
0.1151 1.6794 220 0.6167 81.3623
0.1682 1.7176 225 0.6072 80.7246
0.1168 1.7557 230 0.6008 75.1594
0.1568 1.7939 235 0.6289 82.9565
0.1075 1.8321 240 0.6328 78.6377
0.1994 1.8702 245 0.6366 77.7681
0.1558 1.9084 250 0.6303 75.1884
0.0819 1.9466 255 0.6234 78.4928
0.0948 1.9847 260 0.6336 77.8551
0.0589 2.0229 265 0.6449 78.6667
0.0614 2.0611 270 0.6595 78.4348
0.0549 2.0992 275 0.6809 78.8696
0.0441 2.1374 280 0.6811 76.3768
0.0813 2.1756 285 0.6882 79.1014
0.0568 2.2137 290 0.6929 77.8551
0.0394 2.2519 295 0.6864 76.2899
0.0579 2.2901 300 0.6814 75.6522
0.0476 2.3282 305 0.6900 77.2174
0.0449 2.3664 310 0.6853 75.4783
0.0506 2.4046 315 0.6965 76.3478
0.0486 2.4427 320 0.6974 76.1159
0.0347 2.4809 325 0.7053 77.5652
0.0437 2.5191 330 0.6910 77.1594
0.0458 2.5573 335 0.6903 76.0
0.0508 2.5954 340 0.7050 77.2464
0.0372 2.6336 345 0.6945 75.7681
0.0416 2.6718 350 0.6943 76.0870
0.0457 2.7099 355 0.7083 76.9565
0.0524 2.7481 360 0.7070 75.9420
0.0599 2.7863 365 0.7321 80.5217
0.0499 2.8244 370 0.7176 78.1159
0.0467 2.8626 375 0.6973 76.2029
0.0313 2.9008 380 0.7085 79.3043
0.0273 2.9389 385 0.7043 75.3333
0.0299 2.9771 390 0.7247 77.2174
0.0133 3.0153 395 0.7291 75.3333
0.0176 3.0534 400 0.7323 74.1159
0.0101 3.0916 405 0.7485 77.3043
0.0197 3.1298 410 0.7516 75.8841
0.015 3.1679 415 0.7549 75.4493
0.0241 3.2061 420 0.7676 77.4783
0.0258 3.2443 425 0.7565 76.7826
0.03 3.2824 430 0.7529 74.2029
0.0138 3.3206 435 0.7637 76.1449
0.0145 3.3588 440 0.7699 76.2899
0.0135 3.3969 445 0.7684 77.3333
0.0223 3.4351 450 0.7640 76.6667
0.0206 3.4733 455 0.7552 74.3478
0.0097 3.5115 460 0.7553 73.9130
0.0078 3.5496 465 0.7620 75.2174
0.0079 3.5878 470 0.7668 74.6667
0.0116 3.6260 475 0.7723 74.2319
0.0139 3.6641 480 0.7779 74.4348
0.0199 3.7023 485 0.7823 74.9275
0.017 3.7405 490 0.7832 75.3913
0.0131 3.7786 495 0.7872 75.9130
0.0066 3.8168 500 0.7886 76.3478
0.0105 3.8550 505 0.7885 75.6812
0.0193 3.8931 510 0.7881 75.7391
0.0131 3.9313 515 0.7880 75.5652
0.016 3.9695 520 0.7883 75.7101

Framework versions

  • Transformers 4.57.3
  • Pytorch 2.9.1+cu128
  • Datasets 4.4.1
  • Tokenizers 0.22.1
Downloads last month
93
Safetensors
Model size
2B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for nkkbr/whisper-large-v3-zatoichi-ja-EX-10-combine

Finetuned
(716)
this model

Evaluation results