Whisper Large v3 - Japanese Zatoichi ASR

This model is a fine-tuned version of openai/whisper-large-v3 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4476
  • Wer: 71.9346

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Wer
1.5378 0.0083 1 1.2957 98.1381
1.4921 0.0165 2 1.0248 96.0490
1.3743 0.0248 3 1.0124 95.3678
1.1751 0.0331 4 0.9946 93.8238
1.0236 0.0413 5 0.9759 90.6903
1.1897 0.0496 6 0.9466 87.9655
1.0615 0.0579 7 0.9063 87.0572
1.001 0.0661 8 0.8733 93.5513
0.9501 0.0744 9 0.8512 99.1826
1.0791 0.0826 10 0.8161 110.0363
0.9118 0.0909 11 0.7859 105.9946
0.8815 0.0992 12 0.7585 104.8592
0.8142 0.1074 13 0.7368 99.9546
0.8111 0.1157 14 0.7200 94.8229
0.7073 0.1240 15 0.6956 95.9582
0.8082 0.1322 16 0.6659 101.8165
0.7939 0.1405 17 0.6530 92.8701
0.7081 0.1488 18 0.6465 90.5540
0.6851 0.1570 19 0.6384 83.9691
0.7398 0.1653 20 0.6268 86.0127
0.7392 0.1736 21 0.6157 79.6094
0.6861 0.1818 22 0.6096 83.6512
0.6601 0.1901 23 0.6063 84.2416
0.634 0.1983 24 0.6011 85.8311
0.5911 0.2066 25 0.5976 89.4187
0.6306 0.2149 26 0.5950 91.7802
0.6915 0.2231 27 0.5912 93.3697
0.6969 0.2314 28 0.5853 88.4196
0.5674 0.2397 29 0.5856 85.0136
0.698 0.2479 30 0.5890 86.8756
0.8243 0.2562 31 0.5816 84.1508
0.5331 0.2645 32 0.5663 80.1544
0.6574 0.2727 33 0.5657 84.5595
0.6689 0.2810 34 0.5679 82.6521
0.6994 0.2893 35 0.5650 81.6076
0.6296 0.2975 36 0.5625 82.1072
0.6364 0.3058 37 0.5648 83.4696
0.5224 0.3140 38 0.5643 82.3342
0.5617 0.3223 39 0.5573 80.5631
0.6041 0.3306 40 0.5511 80.1090
0.5838 0.3388 41 0.5464 81.2443
0.6047 0.3471 42 0.5468 87.7384
0.4054 0.3554 43 0.5493 87.6022
0.4887 0.3636 44 0.5484 87.4659
0.5154 0.3719 45 0.5449 84.6957
0.405 0.3802 46 0.5399 80.1090
0.5478 0.3884 47 0.5367 79.0645
0.5762 0.3967 48 0.5341 78.2925
0.6441 0.4050 49 0.5309 75.7039
0.5237 0.4132 50 0.5272 72.3887
0.5383 0.4215 51 0.5240 77.7929
0.5002 0.4298 52 0.5240 77.4296
0.574 0.4380 53 0.5261 83.5604
0.5295 0.4463 54 0.5288 83.5150
0.5053 0.4545 55 0.5243 83.0154
0.5619 0.4628 56 0.5194 80.4269
0.6424 0.4711 57 0.5173 79.9728
0.5516 0.4793 58 0.5172 76.2035
0.5088 0.4876 59 0.5164 75.0681
0.5912 0.4959 60 0.5144 73.6149
0.5418 0.5041 61 0.5094 73.4787
0.5544 0.5124 62 0.5066 73.7965
0.5332 0.5207 63 0.5062 75.7493
0.5251 0.5289 64 0.5081 78.3379
0.4837 0.5372 65 0.5073 78.4287
0.458 0.5455 66 0.5047 78.2925
0.5927 0.5537 67 0.5043 79.6549
0.5764 0.5620 68 0.5055 75.5223
0.5646 0.5702 69 0.5039 75.6585
0.4158 0.5785 70 0.5005 74.7956
0.4543 0.5868 71 0.4959 76.4305
0.6407 0.5950 72 0.4928 74.6140
0.56 0.6033 73 0.4925 72.6158
0.5735 0.6116 74 0.4932 72.8883
0.5469 0.6198 75 0.4958 76.9755
0.4891 0.6281 76 0.4957 77.7929
0.5603 0.6364 77 0.4977 81.1535
0.5247 0.6446 78 0.5001 80.9718
0.595 0.6529 79 0.4982 79.9728
0.5471 0.6612 80 0.4926 78.4741
0.4362 0.6694 81 0.4867 76.8392
0.4606 0.6777 82 0.4840 78.1108
0.4938 0.6860 83 0.4831 82.2434
0.5463 0.6942 84 0.4834 80.9718
0.5244 0.7025 85 0.4819 79.7457
0.5682 0.7107 86 0.4807 81.9709
0.4386 0.7190 87 0.4792 80.0636
0.5093 0.7273 88 0.4798 82.9246
0.4358 0.7355 89 0.4805 85.6494
0.6347 0.7438 90 0.4780 77.9746
0.5476 0.7521 91 0.4744 79.3824
0.4541 0.7603 92 0.4718 83.6512
0.4316 0.7686 93 0.4706 85.3769
0.4403 0.7769 94 0.4693 84.2416
0.4217 0.7851 95 0.4681 84.1962
0.3985 0.7934 96 0.4674 84.0145
0.425 0.8017 97 0.4673 85.6494
0.5047 0.8099 98 0.4677 82.7884
0.4767 0.8182 99 0.4680 82.6521
0.495 0.8264 100 0.4698 83.4242
0.4793 0.8347 101 0.4708 82.9246
0.4736 0.8430 102 0.4704 80.9264
0.5275 0.8512 103 0.4700 79.9728
0.5839 0.8595 104 0.4704 78.8374
0.5803 0.8678 105 0.4704 76.8392
0.4352 0.8760 106 0.4688 75.5223
0.4732 0.8843 107 0.4672 73.8420
0.4922 0.8926 108 0.4661 72.3887
0.4906 0.9008 109 0.4657 72.7520
0.4649 0.9091 110 0.4659 69.0736
0.3851 0.9174 111 0.4666 71.0263
0.5232 0.9256 112 0.4667 71.5259
0.4163 0.9339 113 0.4662 71.9346
0.4634 0.9421 114 0.4666 72.6158
0.4259 0.9504 115 0.4648 72.6612
0.432 0.9587 116 0.4624 72.3887
0.5195 0.9669 117 0.4600 72.5250
0.5797 0.9752 118 0.4584 72.4796
0.4286 0.9835 119 0.4581 72.9791
0.4707 0.9917 120 0.4573 71.7530
0.4827 1.0 121 0.4563 71.9346
0.3233 1.0083 122 0.4554 71.1172
0.3977 1.0165 123 0.4539 70.3451
0.4133 1.0248 124 0.4524 69.6639
0.3025 1.0331 125 0.4516 69.2552
0.2876 1.0413 126 0.4527 70.4360
0.3792 1.0496 127 0.4535 70.5268
0.3335 1.0579 128 0.4560 71.7075
0.3322 1.0661 129 0.4584 72.8883
0.376 1.0744 130 0.4605 73.2516
0.3361 1.0826 131 0.4609 72.5704
0.3784 1.0909 132 0.4607 72.8429
0.3134 1.0992 133 0.4605 71.2988
0.3392 1.1074 134 0.4620 70.7084
0.269 1.1157 135 0.4636 70.0727
0.3121 1.1240 136 0.4656 69.7094
0.268 1.1322 137 0.4667 70.2089
0.3238 1.1405 138 0.4661 71.2080
0.3296 1.1488 139 0.4656 71.9800
0.3074 1.1570 140 0.4670 73.6149
0.3581 1.1653 141 0.4677 74.0236
0.324 1.1736 142 0.4664 73.9782
0.3254 1.1818 143 0.4650 73.9782
0.3061 1.1901 144 0.4630 73.9328
0.2935 1.1983 145 0.4602 73.1153
0.3057 1.2066 146 0.4574 72.4342
0.2668 1.2149 147 0.4569 71.0718
0.2705 1.2231 148 0.4561 70.7539
0.3467 1.2314 149 0.4563 70.6630
0.3091 1.2397 150 0.4565 71.3442
0.2788 1.2479 151 0.4570 71.3896
0.3339 1.2562 152 0.4570 71.5713
0.3077 1.2645 153 0.4575 71.7075
0.3156 1.2727 154 0.4576 71.4805
0.3102 1.2810 155 0.4572 71.5259
0.2836 1.2893 156 0.4568 73.2516
0.2536 1.2975 157 0.4572 72.0254
0.3354 1.3058 158 0.4582 72.4796
0.3433 1.3140 159 0.4590 72.9791
0.3636 1.3223 160 0.4601 73.0245
0.2483 1.3306 161 0.4601 73.1608
0.2769 1.3388 162 0.4597 73.2970
0.3033 1.3471 163 0.4591 73.4332
0.2952 1.3554 164 0.4582 73.1153
0.2569 1.3636 165 0.4568 72.8883
0.2845 1.3719 166 0.4552 72.3887
0.3287 1.3802 167 0.4537 71.6621
0.4109 1.3884 168 0.4533 71.2534
0.3929 1.3967 169 0.4526 70.8447
0.3329 1.4050 170 0.4522 70.7084
0.2335 1.4132 171 0.4519 70.7539
0.2875 1.4215 172 0.4516 72.3433
0.3015 1.4298 173 0.4517 72.6158
0.3022 1.4380 174 0.4521 73.3424
0.3073 1.4463 175 0.4529 72.8429
0.3425 1.4545 176 0.4534 72.8883
0.3096 1.4628 177 0.4540 73.0245
0.2332 1.4711 178 0.4547 73.1608
0.3496 1.4793 179 0.4548 73.5241
0.3898 1.4876 180 0.4547 72.8429
0.2823 1.4959 181 0.4537 72.5704
0.3001 1.5041 182 0.4533 72.4342
0.3317 1.5124 183 0.4527 72.6158
0.3004 1.5207 184 0.4528 72.7066
0.3719 1.5289 185 0.4522 72.1163
0.3361 1.5372 186 0.4518 72.4796
0.2271 1.5455 187 0.4522 73.0699
0.2849 1.5537 188 0.4524 73.7057
0.387 1.5620 189 0.4525 73.8420
0.3307 1.5702 190 0.4521 74.1599
0.3349 1.5785 191 0.4520 73.5695
0.2609 1.5868 192 0.4517 73.6603
0.2763 1.5950 193 0.4516 73.0245
0.2667 1.6033 194 0.4509 72.7520
0.2721 1.6116 195 0.4505 72.6612
0.2611 1.6198 196 0.4502 72.5704
0.262 1.6281 197 0.4497 73.3424
0.2399 1.6364 198 0.4495 73.3878
0.2943 1.6446 199 0.4491 73.2516
0.3182 1.6529 200 0.4489 73.0245
0.2951 1.6612 201 0.4485 72.6612
0.2931 1.6694 202 0.4482 72.5704
0.2867 1.6777 203 0.4478 72.4342
0.3684 1.6860 204 0.4478 71.7075
0.3363 1.6942 205 0.4473 71.7984
0.3265 1.7025 206 0.4477 72.3433
0.2725 1.7107 207 0.4476 72.4342
0.3738 1.7190 208 0.4476 72.3433
0.3246 1.7273 209 0.4476 72.0708
0.2749 1.7355 210 0.4477 72.6158
0.282 1.7438 211 0.4479 72.7520
0.3303 1.7521 212 0.4482 72.9791
0.3164 1.7603 213 0.4483 72.6158
0.2679 1.7686 214 0.4484 72.8429
0.2838 1.7769 215 0.4481 72.8429
0.4008 1.7851 216 0.4482 72.7066
0.3147 1.7934 217 0.4483 72.5704
0.3461 1.8017 218 0.4483 72.4796
0.3171 1.8099 219 0.4482 72.3433
0.3299 1.8182 220 0.4481 72.2525
0.2426 1.8264 221 0.4480 72.2979
0.2564 1.8347 222 0.4481 72.1617
0.283 1.8430 223 0.4478 72.0708
0.29 1.8512 224 0.4479 71.8438
0.3392 1.8595 225 0.4478 72.2071
0.2896 1.8678 226 0.4478 72.3433
0.2383 1.8760 227 0.4481 72.2979
0.2621 1.8843 228 0.4478 72.0254
0.3141 1.8926 229 0.4474 72.2525
0.2319 1.9008 230 0.4476 72.0708
0.2858 1.9091 231 0.4477 72.1617
0.3397 1.9174 232 0.4477 72.1163
0.4042 1.9256 233 0.4476 71.9346
0.3133 1.9339 234 0.4477 72.3433
0.3107 1.9421 235 0.4477 71.9346
0.2506 1.9504 236 0.4477 71.9800
0.2688 1.9587 237 0.4476 71.9346
0.3431 1.9669 238 0.4474 72.2071
0.27 1.9752 239 0.4475 72.0708
0.3266 1.9835 240 0.4480 72.1617
0.3253 1.9917 241 0.4477 72.0708
0.2657 2.0 242 0.4476 71.9346

Framework versions

  • Transformers 4.57.3
  • Pytorch 2.9.1+cu128
  • Datasets 4.4.1
  • Tokenizers 0.22.1
Downloads last month
45
Safetensors
Model size
2B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for nkkbr/whisper-large-v3-zatoichi-ja-zatoichi-TEST-2-EX-3-TRAIN_2_TO_26_EVAL_1_COSINE

Finetuned
(781)
this model

Evaluation results