Whisper Large v3 - Japanese Zatoichi ASR
This model is a fine-tuned version of openai/whisper-large-v3 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4506
- Wer: 75.0681
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|---|---|---|---|---|
| 1.3854 | 0.0127 | 1 | 1.2957 | 98.1381 |
| 1.4152 | 0.0253 | 2 | 1.0247 | 96.0945 |
| 1.0787 | 0.0380 | 3 | 1.0070 | 94.7321 |
| 1.0403 | 0.0506 | 4 | 0.9820 | 92.6431 |
| 1.0091 | 0.0633 | 5 | 0.9406 | 87.5568 |
| 0.9546 | 0.0759 | 6 | 0.8870 | 89.7820 |
| 0.9311 | 0.0886 | 7 | 0.8534 | 89.0554 |
| 0.9116 | 0.1013 | 8 | 0.8080 | 100.3179 |
| 0.8877 | 0.1139 | 9 | 0.7776 | 96.0945 |
| 0.6861 | 0.1266 | 10 | 0.7560 | 102.9973 |
| 0.8515 | 0.1392 | 11 | 0.7217 | 103.1335 |
| 0.6287 | 0.1519 | 12 | 0.6890 | 111.6712 |
| 0.7156 | 0.1646 | 13 | 0.6621 | 110.6721 |
| 0.6571 | 0.1772 | 14 | 0.6429 | 100.5450 |
| 0.6851 | 0.1899 | 15 | 0.6359 | 88.4196 |
| 0.6575 | 0.2025 | 16 | 0.6190 | 87.6476 |
| 0.7203 | 0.2152 | 17 | 0.6126 | 77.1571 |
| 0.7072 | 0.2278 | 18 | 0.6051 | 77.2934 |
| 0.6095 | 0.2405 | 19 | 0.5961 | 82.1526 |
| 0.7896 | 0.2532 | 20 | 0.5892 | 87.5568 |
| 0.6042 | 0.2658 | 21 | 0.5866 | 85.3769 |
| 0.7063 | 0.2785 | 22 | 0.5875 | 90.3270 |
| 0.5943 | 0.2911 | 23 | 0.5786 | 82.1072 |
| 0.6516 | 0.3038 | 24 | 0.5712 | 82.5159 |
| 0.5662 | 0.3165 | 25 | 0.5678 | 84.4687 |
| 0.591 | 0.3291 | 26 | 0.5656 | 87.9655 |
| 0.628 | 0.3418 | 27 | 0.5639 | 84.3324 |
| 0.5737 | 0.3544 | 28 | 0.5576 | 83.6058 |
| 0.5231 | 0.3671 | 29 | 0.5518 | 82.8338 |
| 0.6269 | 0.3797 | 30 | 0.5497 | 83.6058 |
| 0.4757 | 0.3924 | 31 | 0.5469 | 85.5586 |
| 0.5437 | 0.4051 | 32 | 0.5441 | 84.1962 |
| 0.5336 | 0.4177 | 33 | 0.5473 | 82.1072 |
| 0.5153 | 0.4304 | 34 | 0.5403 | 82.5159 |
| 0.5292 | 0.4430 | 35 | 0.5359 | 84.8774 |
| 0.4669 | 0.4557 | 36 | 0.5298 | 85.5132 |
| 0.566 | 0.4684 | 37 | 0.5217 | 81.8347 |
| 0.5262 | 0.4810 | 38 | 0.5173 | 81.9709 |
| 0.404 | 0.4937 | 39 | 0.5156 | 74.9773 |
| 0.5276 | 0.5063 | 40 | 0.5115 | 75.7493 |
| 0.4519 | 0.5190 | 41 | 0.5084 | 77.2934 |
| 0.4074 | 0.5316 | 42 | 0.5089 | 80.1544 |
| 0.5793 | 0.5443 | 43 | 0.5084 | 80.7902 |
| 0.4602 | 0.5570 | 44 | 0.5027 | 79.0645 |
| 0.4422 | 0.5696 | 45 | 0.4975 | 75.6131 |
| 0.4064 | 0.5823 | 46 | 0.4945 | 71.7984 |
| 0.4939 | 0.5949 | 47 | 0.4954 | 70.9809 |
| 0.592 | 0.6076 | 48 | 0.4966 | 70.4360 |
| 0.5544 | 0.6203 | 49 | 0.4974 | 72.2979 |
| 0.5218 | 0.6329 | 50 | 0.4986 | 72.8883 |
| 0.5341 | 0.6456 | 51 | 0.4996 | 75.5677 |
| 0.5519 | 0.6582 | 52 | 0.5025 | 78.3833 |
| 0.5196 | 0.6709 | 53 | 0.5043 | 79.0191 |
| 0.5251 | 0.6835 | 54 | 0.5022 | 77.8383 |
| 0.3997 | 0.6962 | 55 | 0.4982 | 76.2943 |
| 0.4862 | 0.7089 | 56 | 0.4941 | 74.3869 |
| 0.522 | 0.7215 | 57 | 0.4918 | 72.2525 |
| 0.458 | 0.7342 | 58 | 0.4884 | 73.1608 |
| 0.4555 | 0.7468 | 59 | 0.4878 | 77.6567 |
| 0.5084 | 0.7595 | 60 | 0.4883 | 74.3869 |
| 0.4656 | 0.7722 | 61 | 0.4878 | 77.5658 |
| 0.4471 | 0.7848 | 62 | 0.4868 | 79.6549 |
| 0.4575 | 0.7975 | 63 | 0.4834 | 77.9746 |
| 0.4096 | 0.8101 | 64 | 0.4824 | 79.6094 |
| 0.4917 | 0.8228 | 65 | 0.4837 | 79.8365 |
| 0.4396 | 0.8354 | 66 | 0.4830 | 81.5168 |
| 0.4612 | 0.8481 | 67 | 0.4820 | 80.8356 |
| 0.6037 | 0.8608 | 68 | 0.4809 | 76.3397 |
| 0.6233 | 0.8734 | 69 | 0.4804 | 76.4759 |
| 0.4937 | 0.8861 | 70 | 0.4796 | 76.7030 |
| 0.4161 | 0.8987 | 71 | 0.4792 | 76.4759 |
| 0.4997 | 0.9114 | 72 | 0.4772 | 74.3869 |
| 0.4594 | 0.9241 | 73 | 0.4746 | 75.1589 |
| 0.5552 | 0.9367 | 74 | 0.4717 | 72.3433 |
| 0.5164 | 0.9494 | 75 | 0.4702 | 70.8901 |
| 0.511 | 0.9620 | 76 | 0.4696 | 70.4814 |
| 0.4388 | 0.9747 | 77 | 0.4698 | 70.9355 |
| 0.4342 | 0.9873 | 78 | 0.4691 | 70.2543 |
| 0.4286 | 1.0 | 79 | 0.4699 | 71.1172 |
| 0.328 | 1.0127 | 80 | 0.4691 | 72.0708 |
| 0.2731 | 1.0253 | 81 | 0.4676 | 73.2970 |
| 0.3507 | 1.0380 | 82 | 0.4663 | 73.4332 |
| 0.3272 | 1.0506 | 83 | 0.4659 | 72.9337 |
| 0.3078 | 1.0633 | 84 | 0.4665 | 73.0245 |
| 0.3021 | 1.0759 | 85 | 0.4674 | 71.8438 |
| 0.3319 | 1.0886 | 86 | 0.4668 | 70.5268 |
| 0.2959 | 1.1013 | 87 | 0.4674 | 71.0263 |
| 0.2539 | 1.1139 | 88 | 0.4694 | 71.6621 |
| 0.297 | 1.1266 | 89 | 0.4708 | 72.2525 |
| 0.2806 | 1.1392 | 90 | 0.4727 | 73.4332 |
| 0.2894 | 1.1519 | 91 | 0.4731 | 74.4777 |
| 0.3233 | 1.1646 | 92 | 0.4723 | 74.4323 |
| 0.2903 | 1.1772 | 93 | 0.4699 | 74.2961 |
| 0.3894 | 1.1899 | 94 | 0.4674 | 72.7975 |
| 0.3188 | 1.2025 | 95 | 0.4648 | 71.3896 |
| 0.274 | 1.2152 | 96 | 0.4639 | 70.7993 |
| 0.3164 | 1.2278 | 97 | 0.4640 | 70.3451 |
| 0.3096 | 1.2405 | 98 | 0.4647 | 70.2997 |
| 0.314 | 1.2532 | 99 | 0.4640 | 71.5259 |
| 0.342 | 1.2658 | 100 | 0.4638 | 71.4805 |
| 0.3044 | 1.2785 | 101 | 0.4633 | 71.4351 |
| 0.3617 | 1.2911 | 102 | 0.4625 | 70.4814 |
| 0.3293 | 1.3038 | 103 | 0.4615 | 71.3442 |
| 0.2864 | 1.3165 | 104 | 0.4617 | 71.7984 |
| 0.3038 | 1.3291 | 105 | 0.4615 | 72.8883 |
| 0.3027 | 1.3418 | 106 | 0.4618 | 73.3878 |
| 0.2246 | 1.3544 | 107 | 0.4627 | 74.2507 |
| 0.3087 | 1.3671 | 108 | 0.4621 | 73.8420 |
| 0.3413 | 1.3797 | 109 | 0.4602 | 73.1608 |
| 0.3352 | 1.3924 | 110 | 0.4594 | 72.2979 |
| 0.3036 | 1.4051 | 111 | 0.4584 | 71.7075 |
| 0.335 | 1.4177 | 112 | 0.4572 | 71.7984 |
| 0.3337 | 1.4304 | 113 | 0.4564 | 71.0718 |
| 0.2833 | 1.4430 | 114 | 0.4562 | 70.5722 |
| 0.2723 | 1.4557 | 115 | 0.4558 | 70.3906 |
| 0.3181 | 1.4684 | 116 | 0.4559 | 70.2997 |
| 0.3266 | 1.4810 | 117 | 0.4558 | 70.7084 |
| 0.3424 | 1.4937 | 118 | 0.4557 | 71.0718 |
| 0.2744 | 1.5063 | 119 | 0.4555 | 70.7993 |
| 0.2523 | 1.5190 | 120 | 0.4552 | 70.3906 |
| 0.2371 | 1.5316 | 121 | 0.4550 | 69.9364 |
| 0.2985 | 1.5443 | 122 | 0.4547 | 70.2089 |
| 0.2731 | 1.5570 | 123 | 0.4549 | 70.7993 |
| 0.29 | 1.5696 | 124 | 0.4549 | 70.6630 |
| 0.3358 | 1.5823 | 125 | 0.4548 | 70.7539 |
| 0.2824 | 1.5949 | 126 | 0.4545 | 71.0718 |
| 0.2507 | 1.6076 | 127 | 0.4545 | 71.4351 |
| 0.3095 | 1.6203 | 128 | 0.4544 | 71.9346 |
| 0.4167 | 1.6329 | 129 | 0.4544 | 72.1617 |
| 0.3025 | 1.6456 | 130 | 0.4548 | 74.2961 |
| 0.387 | 1.6582 | 131 | 0.4541 | 75.6131 |
| 0.2967 | 1.6709 | 132 | 0.4540 | 75.9764 |
| 0.3051 | 1.6835 | 133 | 0.4538 | 75.7493 |
| 0.2935 | 1.6962 | 134 | 0.4535 | 76.0672 |
| 0.3093 | 1.7089 | 135 | 0.4537 | 76.1126 |
| 0.3067 | 1.7215 | 136 | 0.4534 | 76.5213 |
| 0.294 | 1.7342 | 137 | 0.4533 | 76.9755 |
| 0.3125 | 1.7468 | 138 | 0.4528 | 76.8392 |
| 0.3131 | 1.7595 | 139 | 0.4526 | 76.3851 |
| 0.3453 | 1.7722 | 140 | 0.4524 | 76.3851 |
| 0.2877 | 1.7848 | 141 | 0.4520 | 76.1126 |
| 0.3226 | 1.7975 | 142 | 0.4521 | 76.1126 |
| 0.3423 | 1.8101 | 143 | 0.4517 | 75.5677 |
| 0.286 | 1.8228 | 144 | 0.4515 | 75.5677 |
| 0.3066 | 1.8354 | 145 | 0.4513 | 75.6131 |
| 0.272 | 1.8481 | 146 | 0.4510 | 75.5223 |
| 0.2917 | 1.8608 | 147 | 0.4510 | 75.3406 |
| 0.3386 | 1.8734 | 148 | 0.4509 | 75.2952 |
| 0.2745 | 1.8861 | 149 | 0.4509 | 75.0681 |
| 0.3083 | 1.8987 | 150 | 0.4509 | 75.0681 |
| 0.3454 | 1.9114 | 151 | 0.4509 | 75.2044 |
| 0.3412 | 1.9241 | 152 | 0.4510 | 74.9773 |
| 0.3342 | 1.9367 | 153 | 0.4510 | 75.0227 |
| 0.2733 | 1.9494 | 154 | 0.4509 | 74.6140 |
| 0.2795 | 1.9620 | 155 | 0.4507 | 75.2498 |
| 0.3091 | 1.9747 | 156 | 0.4509 | 74.9773 |
| 0.3062 | 1.9873 | 157 | 0.4505 | 74.7048 |
| 0.2928 | 2.0 | 158 | 0.4506 | 75.0681 |
Framework versions
- Transformers 4.57.3
- Pytorch 2.9.1+cu128
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- 42
Model tree for nkkbr/whisper-large-v3-zatoichi-ja-zatoichi-TEST-2-EX-6-TRAIN_2_TO_26_EVAL_1_COSINE
Base model
openai/whisper-large-v3