nlp-esg-scoring/bert-base-finetuned-cleaned-esg-plus
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 2.7242
- Validation Loss: 2.5107
- Epoch: 9
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -146, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'passive_serialization': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
Training results
Train Loss | Validation Loss | Epoch |
---|---|---|
2.7185 | 2.5414 | 0 |
2.7167 | 2.5223 | 1 |
2.7161 | 2.5627 | 2 |
2.7189 | 2.5305 | 3 |
2.7248 | 2.5103 | 4 |
2.7173 | 2.5095 | 5 |
2.7272 | 2.5135 | 6 |
2.7215 | 2.5447 | 7 |
2.7247 | 2.5632 | 8 |
2.7242 | 2.5107 | 9 |
Framework versions
- Transformers 4.20.1
- TensorFlow 2.8.2
- Datasets 2.3.2
- Tokenizers 0.12.1
- Downloads last month
- 5