nlp-esg-scoring/bert-base-finetuned-esg-a4s

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 1.9437
  • Validation Loss: 1.9842
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -812, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'passive_serialization': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Validation Loss Epoch
1.9200 2.0096 0
1.9249 1.9926 1
1.9366 2.0100 2
1.9327 1.9814 3
1.9266 2.0152 4
1.9332 2.0519 5
1.9203 2.0437 6
1.9238 2.0118 7
1.9290 2.0019 8
1.9437 1.9842 9

Framework versions

  • Transformers 4.20.1
  • TensorFlow 2.8.2
  • Datasets 2.3.2
  • Tokenizers 0.12.1
Downloads last month
1
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.