|
--- |
|
license: apache-2.0 |
|
base_model: riotu-lab/ArabianGPT-01B |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
- rouge |
|
model-index: |
|
- name: results |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# results |
|
|
|
This model is a fine-tuned version of [riotu-lab/ArabianGPT-01B](https://huggingface.co/riotu-lab/ArabianGPT-01B) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.9086 |
|
- Bleu: 0.3178 |
|
- Rouge1: 0.5876 |
|
- Rouge2: 0.3513 |
|
- Rougel: 0.5510 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 20.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Bleu | Validation Loss | Rouge1 | Rouge2 | Rougel | |
|
|:-------------:|:-------:|:----:|:------:|:---------------:|:------:|:------:|:------:| |
|
| 3.359 | 1.5674 | 500 | 0.1142 | 3.1283 | 0.3298 | 0.0843 | 0.2561 | |
|
| 2.9208 | 3.1348 | 1000 | 0.1491 | 2.7298 | 0.4041 | 0.1430 | 0.3408 | |
|
| 2.619 | 4.7022 | 1500 | 0.1607 | 2.6229 | 0.4264 | 0.1631 | 0.3675 | |
|
| 2.4047 | 4.3384 | 2000 | 2.2002 | 0.2721 | 0.4976 | 0.2542 | 0.4506 | |
|
| 2.19 | 5.4230 | 2500 | 2.0992 | 0.2854 | 0.5205 | 0.2788 | 0.4773 | |
|
| 2.0473 | 6.5076 | 3000 | 2.0362 | 0.2929 | 0.5381 | 0.2965 | 0.4965 | |
|
| 1.9397 | 7.5922 | 3500 | 1.9933 | 0.2996 | 0.5494 | 0.3103 | 0.5102 | |
|
| 1.857 | 8.6768 | 4000 | 1.9647 | 0.3024 | 0.5598 | 0.3191 | 0.5203 | |
|
| 1.784 | 9.7614 | 4500 | 1.9443 | 0.3062 | 0.5675 | 0.3269 | 0.5279 | |
|
| 1.7239 | 10.8460 | 5000 | 1.9320 | 0.3099 | 0.5724 | 0.3339 | 0.5341 | |
|
| 1.6713 | 11.9306 | 5500 | 1.9206 | 0.3116 | 0.5765 | 0.3383 | 0.5387 | |
|
| 1.6263 | 13.0152 | 6000 | 1.9168 | 0.3127 | 0.5781 | 0.3416 | 0.5416 | |
|
| 1.5869 | 14.0998 | 6500 | 1.9148 | 0.3137 | 0.5829 | 0.3448 | 0.5451 | |
|
| 1.5544 | 15.1844 | 7000 | 1.9121 | 0.3158 | 0.5845 | 0.3476 | 0.5476 | |
|
| 1.5307 | 16.2690 | 7500 | 1.9106 | 0.3165 | 0.5853 | 0.3488 | 0.5486 | |
|
| 1.5087 | 17.3536 | 8000 | 1.9093 | 0.3169 | 0.5861 | 0.3504 | 0.5500 | |
|
| 1.4937 | 18.4382 | 8500 | 1.9084 | 0.3172 | 0.5869 | 0.3505 | 0.5504 | |
|
| 1.4824 | 19.5228 | 9000 | 1.9086 | 0.3178 | 0.5876 | 0.3513 | 0.5510 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.0.dev0 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |
|
|