Quantization 4Bits - 5.02 GB GPU memory usage for inference:
** Vide same fine-tuning for GPT-J-6B: https://huggingface.co/nlpulse/gpt-j-6b-english_quotes
$ nvidia-smi
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 525.125.06 Driver Version: 525.125.06 CUDA Version: 12.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 1 NVIDIA GeForce ... Off | 00000000:04:00.0 Off | N/A |
| 65% 74C P2 169W / 170W | 5028MiB / 12288MiB | 97% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
Fine-tuning
3 epochs, all dataset samples (split=train), 939 steps
1 x GPU NVidia RTX 3060 12GB - max. GPU memory: 6.85 GB
Duration: 1h54min
$ nvidia-smi && free -h
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 525.125.06 Driver Version: 525.125.06 CUDA Version: 12.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 1 NVIDIA GeForce ... Off | 00000000:04:00.0 Off | N/A |
|100% 87C P2 168W / 170W | 6854MiB / 12288MiB | 98% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
total used free shared buff/cache available
Mem: 77Gi 13Gi 1.1Gi 116Mi 63Gi 63Gi
Swap: 37Gi 3.8Gi 34Gi
Inference
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftConfig, PeftModel
model_path = "nlpulse/llama2-7b-chat-english_quotes"
# tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path, use_auth_token=True)
tokenizer.pad_token = tokenizer.eos_token
# quantization config
quant_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
# model adapter PEFT LoRA
config = PeftConfig.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path,
quantization_config=quant_config, device_map={"":0}, use_auth_token=True)
model = PeftModel.from_pretrained(model, model_path)
# inference
device = "cuda"
text_list = ["Ask not what your country", "Be the change that", "You only live once, but", "I'm selfish, impatient and"]
for text in text_list:
inputs = tokenizer(text, return_tensors="pt").to(device)
outputs = model.generate(**inputs, max_new_tokens=60)
print('>> ', text, " => ", tokenizer.decode(outputs[0], skip_special_tokens=True))
Requirements
pip install -U bitsandbytes
pip install -U git+https://github.com/huggingface/transformers.git
pip install -U git+https://github.com/huggingface/peft.git
pip install -U accelerate
pip install -U datasets
pip install -U scipy
Scripts
References
QLoRa: Fine-Tune a Large Language Model on Your GPU
Making LLMs even more accessible with bitsandbytes, 4-bit quantization and QLoRA
Training procedure
The following bitsandbytes
quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
Framework versions
- PEFT 0.4.0.dev0
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.