File size: 4,892 Bytes
094595c 4d15db2 2436d09 094595c 2436d09 482a654 2436d09 99bad3a 2436d09 99bad3a 2436d09 4d15db2 2436d09 4d15db2 2436d09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
---
library_name: peft
license: apache-2.0
language:
- en
datasets:
- Abirate/english_quotes
---
# Quantization 4Bits - 5.02 GB GPU memory usage for inference:
** Vide same fine-tuning for GPT-J-6B: [https://huggingface.co/nlpulse/gpt-j-6b-english_quotes](https://huggingface.co/nlpulse/gpt-j-6b-english_quotes)
```
$ nvidia-smi
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 525.125.06 Driver Version: 525.125.06 CUDA Version: 12.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 1 NVIDIA GeForce ... Off | 00000000:04:00.0 Off | N/A |
| 65% 74C P2 169W / 170W | 5028MiB / 12288MiB | 97% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
```
## Fine-tuning
```
3 epochs, all dataset samples (split=train), 939 steps
1 x GPU NVidia RTX 3060 12GB - max. GPU memory: 6.85 GB
Duration: 1h54min
$ nvidia-smi && free -h
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 525.125.06 Driver Version: 525.125.06 CUDA Version: 12.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 1 NVIDIA GeForce ... Off | 00000000:04:00.0 Off | N/A |
|100% 87C P2 168W / 170W | 6854MiB / 12288MiB | 98% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
total used free shared buff/cache available
Mem: 77Gi 13Gi 1.1Gi 116Mi 63Gi 63Gi
Swap: 37Gi 3.8Gi 34Gi
```
## Inference
```
import os
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftConfig, PeftModel
model_path = "nlpulse/llama2-7b-chat-english_quotes"
# tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path, use_auth_token=True)
tokenizer.pad_token = tokenizer.eos_token
# quantization config
quant_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
# model adapter PEFT LoRA
config = PeftConfig.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path,
quantization_config=quant_config, device_map={"":0}, use_auth_token=True)
model = PeftModel.from_pretrained(model, model_path)
# inference
device = "cuda"
text_list = ["Ask not what your country", "Be the change that", "You only live once, but", "I'm selfish, impatient and"]
for text in text_list:
inputs = tokenizer(text, return_tensors="pt").to(device)
outputs = model.generate(**inputs, max_new_tokens=60)
print('>> ', text, " => ", tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Requirements
```
pip install -U bitsandbytes
pip install -U git+https://github.com/huggingface/transformers.git
pip install -U git+https://github.com/huggingface/peft.git
pip install -U accelerate
pip install -U datasets
pip install -U scipy
```
## Scripts
[https://github.com/nlpulse-io/sample_codes/tree/main/fine-tuning/peft_quantization_4bits/llama2-7b-chat](https://github.com/nlpulse-io/sample_codes/tree/main/fine-tuning/peft_quantization_4bits/llama2-7b-chat)
## References
[QLoRa: Fine-Tune a Large Language Model on Your GPU](https://towardsdatascience.com/qlora-fine-tune-a-large-language-model-on-your-gpu-27bed5a03e2b)
[Making LLMs even more accessible with bitsandbytes, 4-bit quantization and QLoRA](https://huggingface.co/blog/4bit-transformers-bitsandbytes)
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.4.0.dev0 |