Edit model card

roberta-base-finetuned-swag

This model is a fine-tuned version of roberta-base on the swag dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5161
  • Accuracy: 0.8266

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: IPU
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • total_eval_batch_size: 10
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • training precision: Mixed Precision

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1273 1.0 2298 0.5415 0.7898
0.2373 2.0 4596 0.4756 0.8175
0.1788 3.0 6894 0.5161 0.8266

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.10.0+cpu
  • Datasets 2.7.1
  • Tokenizers 0.12.1
Downloads last month
11
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Dataset used to train nmb-paperspace-hf/roberta-base-finetuned-swag