nnishi's picture
Update README.md
94fcbfe verified
---
base_model: llm-jp/llm-jp-3-13b
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: cc
language:
- en
datasets:
- kajuma/CC-news-2024-July-October-cleaned
- weblab-GENIAC/aya-ja-nemotron-dpo-masked
---
# Uploaded model
- **Developed by:** nnishi
- **License:** CC-BY-NC-SA
- **Finetuned from model :** llm-jp/llm-jp-3-13b
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
# HOW TO INFERENCE for competition evaluators
Run in google colab L4
```ipynb
!pip install unsloth
!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir --no-deps git+https://github.com/unslothai/unsloth.git
HF_TOKEN = # WRITE YOUR HF_TOKEN
ELYZA_TASKS_100_TV_JSONL_PATH = # WRITE
# Output for elyza-tasks-100-tv is saved as "output.jsonl"
from huggingface_hub import login
login(HF_TOKEN)
from unsloth import FastLanguageModel
import torch
max_seq_length = 2048
dtype = torch.bfloat16
load_in_4bit = True
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "nnishi/llm-jp-3-13b_kajumanews5760_ichikara_ayadpo100rows_lora",
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
token = HF_TOKEN,
)
import json
datasets = []
with open(ELYZA_TASKS_100_TV_JSONL_PATH, "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
from tqdm import tqdm
FastLanguageModel.for_inference(model)
results = []
for dt in tqdm(datasets):
input = dt["input"]
prompt = f"""### 指示\n{input}\n### 回答\n"""
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens = 2048, use_cache = True, do_sample=False, repetition_penalty=1.2)
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
with open("output.jsonl", "w") as f:
for r in results:
f.write(json.dumps(r, ensure_ascii=False) + "\n")
```
# Development steps
- quantize `llm-jp/llm-jp-3-13b`
- continued pre-training
- randomly chosen 5760 records in `kajuma/CC-news-2024-July-October-cleaned`
- instruction tuning
- all data in `ichikara-instruction`'s `ichikara-instruction-003-001-1.json`
- direct policy optimization
- randomly chosen 100 records in `weblab-GENIAC/aya-ja-nemotron-dpo-masked`
# Used datasets and their licenses
## kajuma/CC-news-2024-July-October-cleaned
- [creator](https://huggingface.co/kajuma)
- [repository](https://huggingface.co/datasets/kajuma/CC-news-2024-July-October-cleaned)
kazuma
kajuma/CC-news-2024-July-October-cleaned
ODC-BY
## ichikara-instruction: LLMのための日本語インストラクションデータ
- [homepage](https://liat-aip.sakura.ne.jp/wp/llm%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E6%97%A5%E6%9C%AC%E8%AA%9E%E3%82%A4%E3%83%B3%E3%82%B9%E3%83%88%E3%83%A9%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B3%E3%83%87%E3%83%BC%E3%82%BF%E4%BD%9C%E6%88%90/)
理化学研究所 革新知能統合研究センター 言語情報アクセス技術チーム
ichikara-instruction: LLMのための日本語インストラクションデータ
CC-BY-NC-SA
## weblab-GENIAC/aya-ja-nemotron-dpo-masked
- [creator](https://huggingface.co/weblab-GENIAC)
- [repository](https://huggingface.co/datasets/weblab-GENIAC/aya-ja-nemotron-dpo-masked)
weblab-GENIAC
weblab-GENIAC/aya-ja-nemotron-dpo-masked
Apache License 2.0