metadata
license: llama2
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: codellama/CodeLlama-7b-hf
model-index:
- name: camel-lora
results: []
See axolotl config
axolotl version: 0.4.0
base_model: codellama/CodeLlama-7b-hf
model_type: LlamaForCausalLM
tokenizer_type: CodeLlamaTokenizer
is_llama_derived_model: true
hub_model_id: noeloco/camel-lora
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: noeloco/fizzbuzz-sft
type: alpaca
ds_type: json
hf_use_auth_token: true
push_dataset_to_hub: noeloco
val_set_size: 0.05
output_dir: ./lora-out
chat_template: chatml
sequence_len: 4096
sample_packing: false
pad_to_sequence_len: true
adapter: qlora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: runpod1
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16: false
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug: true
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
camel-lora
This model is a fine-tuned version of codellama/CodeLlama-7b-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0290
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.7685 | 0.06 | 1 | 2.5524 |
1.8762 | 0.29 | 5 | 2.4927 |
1.215 | 0.57 | 10 | 1.4546 |
0.484 | 0.86 | 15 | 0.7250 |
0.3667 | 1.14 | 20 | 0.4146 |
0.1638 | 1.43 | 25 | 0.2123 |
0.2948 | 1.71 | 30 | 0.0980 |
0.2003 | 2.0 | 35 | 0.0629 |
0.0888 | 2.29 | 40 | 0.0577 |
0.0918 | 2.57 | 45 | 0.0414 |
0.0931 | 2.86 | 50 | 0.0363 |
0.0982 | 3.14 | 55 | 0.0304 |
0.0849 | 3.43 | 60 | 0.0289 |
0.0511 | 3.71 | 65 | 0.0290 |
Framework versions
- PEFT 0.10.1.dev0
- Transformers 4.40.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0