PhoBert_Lexical_Hosting_Dataset10K
This model is a fine-tuned version of vinai/phobert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4273
- Accuracy: 0.8794
- F1: 0.8974
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
1.7448 | 1.2422 | 200 | 0.5205 | 0.7188 | 0.7907 |
1.7737 | 2.4845 | 400 | 0.3096 | 0.9020 | 0.9067 |
1.3408 | 3.7267 | 600 | 0.3578 | 0.8771 | 0.8938 |
1.7858 | 4.9689 | 800 | 0.3340 | 0.8927 | 0.9039 |
1.1154 | 6.2112 | 1000 | 0.2603 | 0.9155 | 0.9179 |
1.2382 | 7.4534 | 1200 | 0.4342 | 0.8434 | 0.8738 |
1.1267 | 8.6957 | 1400 | 0.3936 | 0.8697 | 0.8904 |
1.0833 | 9.9379 | 1600 | 0.3876 | 0.8677 | 0.8892 |
1.1027 | 11.1801 | 1800 | 0.4320 | 0.8757 | 0.8948 |
0.8329 | 12.4224 | 2000 | 0.3797 | 0.8832 | 0.8995 |
1.1287 | 13.6646 | 2200 | 0.4414 | 0.8677 | 0.8900 |
1.1326 | 14.9068 | 2400 | 0.4273 | 0.8794 | 0.8974 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.20.3
- Downloads last month
- 2
Model tree for nompahm/PhoBert_Lexical_Hosting_Dataset10K
Base model
vinai/phobert-base-v2