PhoBert_Lexical_Hosting_Dataset10K

This model is a fine-tuned version of vinai/phobert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4273
  • Accuracy: 0.8794
  • F1: 0.8974

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.7448 1.2422 200 0.5205 0.7188 0.7907
1.7737 2.4845 400 0.3096 0.9020 0.9067
1.3408 3.7267 600 0.3578 0.8771 0.8938
1.7858 4.9689 800 0.3340 0.8927 0.9039
1.1154 6.2112 1000 0.2603 0.9155 0.9179
1.2382 7.4534 1200 0.4342 0.8434 0.8738
1.1267 8.6957 1400 0.3936 0.8697 0.8904
1.0833 9.9379 1600 0.3876 0.8677 0.8892
1.1027 11.1801 1800 0.4320 0.8757 0.8948
0.8329 12.4224 2000 0.3797 0.8832 0.8995
1.1287 13.6646 2200 0.4414 0.8677 0.8900
1.1326 14.9068 2400 0.4273 0.8794 0.8974

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.20.3
Downloads last month
2
Safetensors
Model size
135M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for nompahm/PhoBert_Lexical_Hosting_Dataset10K

Finetuned
(200)
this model