metadata
base_model:
- unsloth/Mistral-Nemo-Instruct-2407
Note: This model is no longer the optimal W8A8 quantization, please consider using a better quantization model I made later: noneUsername/Mistral-Nemo-Instruct-2407-abliterated-W8A8-Dynamic-Per-Token
vllm (pretrained=/root/autodl-tmp/Mistral-Nemo-Instruct-2407,add_bos_token=true,tensor_parallel_size=2,max_model_len=4096,gpu_memory_utilization=0.85,swap_space=0), gen_kwargs: (None), limit: 250.0, num_fewshot: 5, batch_size: auto
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | ||
---|---|---|---|---|---|---|---|---|
gsm8k | 3 | flexible-extract | 5 | exact_match | ↑ | 0.800 | ± | 0.0253 |
strict-match | 5 | exact_match | ↑ | 0.784 | ± | 0.0261 |
vllm (pretrained=/root/autodl-tmp/output,add_bos_token=true,tensor_parallel_size=2,max_model_len=2048), gen_kwargs: (None), limit: 250.0, num_fewshot: 5, batch_size: auto
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | ||
---|---|---|---|---|---|---|---|---|
gsm8k | 3 | flexible-extract | 5 | exact_match | ↑ | 0.792 | ± | 0.0257 |
strict-match | 5 | exact_match | ↑ | 0.776 | ± | 0.0264 |
I found some rules about quantization parameters and achieved better results.