base_model: meta-llama/Meta-Llama-3.1-70B-Instruct
language:
- en
- de
- fr
- it
- pt
- hi
- es
- th
library_name: transformers
license: llama3.1
pipeline_tag: text-generation
tags:
- facebook
- meta
- pytorch
- llama
- llama-3
Model Information
The Llama 3.1 instruction tuned text only 70B model is optimized for multilingual dialogue use cases and outperform many of the available open source and closed chat models on common industry benchmarks.
This repository stores a experimental IQ_1S quantized GGUF Llama 3.1 instruction tuned 70B model.
Model developer: Meta
Model Architecture: Llama 3.1 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.
Training Data | Params | Input modalities | Output modalities | Context length | GQA | Token count | Knowledge cutoff | |
---|---|---|---|---|---|---|---|---|
Llama 3.1 (text only) | A new mix of publicly available online data. | 70B | Multilingual Text | Multilingual Text and code | 128k | Yes | 15T+ | December 2023 |
Supported languages: English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai.
Quantization Information
Weight Quantization | PPL |
---|---|
FP16 | 4.1892 +/- 0.01430 |
IQ_1S | 8.5005 +/- 0.03298 |
Dataset used for re-calibration: Mix of standard_cal_data
The generated imatrix
can be downloaded from imatrix.dat
Usage: with llama-cpp-python
from llama_cpp import Llama
llm = Llama.from_pretrained(
repo_id="npc0/Meta-Llama-3.1-70B-Instruct-IQ_1S",
filename="GGUF_FILE",
)
llm.create_chat_completion(
messages = [
{
"role": "user",
"content": "What is the capital of France?"
}
]
)