Edit model card

layoutlm-sroie

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the sroie dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0363
  • Address: {'precision': 0.901685393258427, 'recall': 0.9250720461095101, 'f1': 0.9132290184921764, 'number': 347}
  • Company: {'precision': 0.904891304347826, 'recall': 0.9596541786743515, 'f1': 0.9314685314685315, 'number': 347}
  • Date: {'precision': 0.9913544668587896, 'recall': 0.9913544668587896, 'f1': 0.9913544668587896, 'number': 347}
  • Total: {'precision': 0.8155080213903744, 'recall': 0.8789625360230547, 'f1': 0.8460471567267684, 'number': 347}
  • Overall Precision: 0.9017
  • Overall Recall: 0.9388
  • Overall F1: 0.9199
  • Overall Accuracy: 0.9930

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Address Company Date Total Overall Precision Overall Recall Overall F1 Overall Accuracy
0.5189 1.0 40 0.1280 {'precision': 0.7891891891891892, 'recall': 0.8414985590778098, 'f1': 0.8145048814504882, 'number': 347} {'precision': 0.6987012987012987, 'recall': 0.7752161383285303, 'f1': 0.7349726775956286, 'number': 347} {'precision': 0.6651982378854625, 'recall': 0.8703170028818443, 'f1': 0.7540574282147315, 'number': 347} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 347} 0.7138 0.6218 0.6646 0.9650
0.0849 2.0 80 0.0558 {'precision': 0.8753462603878116, 'recall': 0.9106628242074928, 'f1': 0.8926553672316384, 'number': 347} {'precision': 0.8102189781021898, 'recall': 0.9596541786743515, 'f1': 0.8786279683377309, 'number': 347} {'precision': 0.9178082191780822, 'recall': 0.9654178674351584, 'f1': 0.9410112359550562, 'number': 347} {'precision': 0.5179282868525896, 'recall': 0.3746397694524496, 'f1': 0.43478260869565216, 'number': 347} 0.8026 0.8026 0.8026 0.9851
0.0447 3.0 120 0.0435 {'precision': 0.8997214484679665, 'recall': 0.930835734870317, 'f1': 0.9150141643059491, 'number': 347} {'precision': 0.8954423592493298, 'recall': 0.962536023054755, 'f1': 0.9277777777777777, 'number': 347} {'precision': 0.96045197740113, 'recall': 0.9798270893371758, 'f1': 0.9700427960057061, 'number': 347} {'precision': 0.6222222222222222, 'recall': 0.6455331412103746, 'f1': 0.6336633663366337, 'number': 347} 0.8444 0.8797 0.8617 0.9890
0.0318 4.0 160 0.0347 {'precision': 0.8777777777777778, 'recall': 0.9106628242074928, 'f1': 0.8939179632248939, 'number': 347} {'precision': 0.9153005464480874, 'recall': 0.9654178674351584, 'f1': 0.9396914446002805, 'number': 347} {'precision': 0.9913544668587896, 'recall': 0.9913544668587896, 'f1': 0.9913544668587896, 'number': 347} {'precision': 0.671957671957672, 'recall': 0.7319884726224783, 'f1': 0.7006896551724137, 'number': 347} 0.8608 0.8999 0.8799 0.9910
0.0245 5.0 200 0.0360 {'precision': 0.8885793871866295, 'recall': 0.9193083573487032, 'f1': 0.9036827195467422, 'number': 347} {'precision': 0.8909574468085106, 'recall': 0.9654178674351584, 'f1': 0.9266943291839556, 'number': 347} {'precision': 0.9913294797687862, 'recall': 0.9884726224783862, 'f1': 0.98989898989899, 'number': 347} {'precision': 0.7873754152823921, 'recall': 0.6829971181556196, 'f1': 0.7314814814814815, 'number': 347} 0.8929 0.8890 0.8910 0.9910
0.0171 6.0 240 0.0325 {'precision': 0.8932584269662921, 'recall': 0.9164265129682997, 'f1': 0.9046941678520626, 'number': 347} {'precision': 0.912568306010929, 'recall': 0.962536023054755, 'f1': 0.9368863955119215, 'number': 347} {'precision': 0.991304347826087, 'recall': 0.9855907780979827, 'f1': 0.9884393063583815, 'number': 347} {'precision': 0.823170731707317, 'recall': 0.7780979827089337, 'f1': 0.8, 'number': 347} 0.9061 0.9107 0.9084 0.9926
0.0133 7.0 280 0.0352 {'precision': 0.8969359331476323, 'recall': 0.9279538904899135, 'f1': 0.9121813031161472, 'number': 347} {'precision': 0.9103260869565217, 'recall': 0.9654178674351584, 'f1': 0.937062937062937, 'number': 347} {'precision': 0.9885057471264368, 'recall': 0.9913544668587896, 'f1': 0.9899280575539569, 'number': 347} {'precision': 0.7801608579088471, 'recall': 0.8386167146974063, 'f1': 0.8083333333333332, 'number': 347} 0.8923 0.9308 0.9111 0.9922
0.013 8.0 320 0.0338 {'precision': 0.889196675900277, 'recall': 0.9250720461095101, 'f1': 0.9067796610169492, 'number': 347} {'precision': 0.9103260869565217, 'recall': 0.9654178674351584, 'f1': 0.937062937062937, 'number': 347} {'precision': 0.9885057471264368, 'recall': 0.9913544668587896, 'f1': 0.9899280575539569, 'number': 347} {'precision': 0.7887700534759359, 'recall': 0.8501440922190202, 'f1': 0.8183079056865465, 'number': 347} 0.8925 0.9330 0.9123 0.9927
0.0105 9.0 360 0.0378 {'precision': 0.8885793871866295, 'recall': 0.9193083573487032, 'f1': 0.9036827195467422, 'number': 347} {'precision': 0.9081081081081082, 'recall': 0.968299711815562, 'f1': 0.9372384937238494, 'number': 347} {'precision': 0.9913294797687862, 'recall': 0.9884726224783862, 'f1': 0.98989898989899, 'number': 347} {'precision': 0.8096590909090909, 'recall': 0.8213256484149856, 'f1': 0.8154506437768241, 'number': 347} 0.8991 0.9244 0.9115 0.9923
0.0094 10.0 400 0.0353 {'precision': 0.901685393258427, 'recall': 0.9250720461095101, 'f1': 0.9132290184921764, 'number': 347} {'precision': 0.904891304347826, 'recall': 0.9596541786743515, 'f1': 0.9314685314685315, 'number': 347} {'precision': 0.9913544668587896, 'recall': 0.9913544668587896, 'f1': 0.9913544668587896, 'number': 347} {'precision': 0.8142076502732241, 'recall': 0.8587896253602305, 'f1': 0.8359046283309958, 'number': 347} 0.9019 0.9337 0.9175 0.9929
0.0078 11.0 440 0.0373 {'precision': 0.8938547486033519, 'recall': 0.9221902017291066, 'f1': 0.9078014184397163, 'number': 347} {'precision': 0.9098360655737705, 'recall': 0.9596541786743515, 'f1': 0.9340813464235624, 'number': 347} {'precision': 0.9913544668587896, 'recall': 0.9913544668587896, 'f1': 0.9913544668587896, 'number': 347} {'precision': 0.8150134048257373, 'recall': 0.8760806916426513, 'f1': 0.8444444444444444, 'number': 347} 0.9010 0.9373 0.9188 0.9928
0.0074 12.0 480 0.0379 {'precision': 0.8994413407821229, 'recall': 0.9279538904899135, 'f1': 0.9134751773049646, 'number': 347} {'precision': 0.9128065395095368, 'recall': 0.9654178674351584, 'f1': 0.938375350140056, 'number': 347} {'precision': 0.9913544668587896, 'recall': 0.9913544668587896, 'f1': 0.9913544668587896, 'number': 347} {'precision': 0.835195530726257, 'recall': 0.861671469740634, 'f1': 0.8482269503546098, 'number': 347} 0.9091 0.9366 0.9226 0.9931
0.007 13.0 520 0.0357 {'precision': 0.9019607843137255, 'recall': 0.9279538904899135, 'f1': 0.9147727272727272, 'number': 347} {'precision': 0.9024390243902439, 'recall': 0.9596541786743515, 'f1': 0.9301675977653631, 'number': 347} {'precision': 0.9913544668587896, 'recall': 0.9913544668587896, 'f1': 0.9913544668587896, 'number': 347} {'precision': 0.8328767123287671, 'recall': 0.8760806916426513, 'f1': 0.853932584269663, 'number': 347} 0.9061 0.9388 0.9222 0.9932
0.0069 14.0 560 0.0361 {'precision': 0.901685393258427, 'recall': 0.9250720461095101, 'f1': 0.9132290184921764, 'number': 347} {'precision': 0.9051490514905149, 'recall': 0.962536023054755, 'f1': 0.9329608938547486, 'number': 347} {'precision': 0.9913544668587896, 'recall': 0.9913544668587896, 'f1': 0.9913544668587896, 'number': 347} {'precision': 0.8046875, 'recall': 0.8904899135446686, 'f1': 0.8454172366621068, 'number': 347} 0.8984 0.9424 0.9198 0.9930
0.0065 15.0 600 0.0363 {'precision': 0.901685393258427, 'recall': 0.9250720461095101, 'f1': 0.9132290184921764, 'number': 347} {'precision': 0.904891304347826, 'recall': 0.9596541786743515, 'f1': 0.9314685314685315, 'number': 347} {'precision': 0.9913544668587896, 'recall': 0.9913544668587896, 'f1': 0.9913544668587896, 'number': 347} {'precision': 0.8155080213903744, 'recall': 0.8789625360230547, 'f1': 0.8460471567267684, 'number': 347} 0.9017 0.9388 0.9199 0.9930

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.12.1
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.