nrshoudi's picture
Model save
b9beea3
|
raw
history blame
3.63 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xls-r-300m-Arabic-phoneme-based-MDD-experiment3
    results: []

wav2vec2-large-xls-r-300m-Arabic-phoneme-based-MDD-experiment3

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0558
  • Per: 0.0156
  • Wer: 0.0184

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 8
  • eval_batch_size: 6
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 250
  • num_epochs: 30.0

Training results

Training Loss Epoch Step Validation Loss Per Wer
2.4598 1.0 546 1.8270 0.9903 0.9822
1.8808 2.0 1093 1.8033 0.9898 0.9813
1.8584 3.0 1640 1.7560 0.9950 0.9906
1.8313 4.0 2187 1.6726 0.9881 0.9817
1.764 5.0 2733 1.4356 0.9688 0.9680
1.5369 6.0 3280 0.6934 0.5617 0.5871
1.228 7.0 3827 0.3561 0.2158 0.2483
1.0419 8.0 4374 0.1982 0.0925 0.1170
0.9134 9.0 4920 0.1557 0.0692 0.0806
0.813 10.0 5467 0.1070 0.0507 0.0589
0.7471 11.0 6014 0.0969 0.0389 0.0453
0.693 12.0 6561 0.0840 0.0311 0.0375
0.6506 13.0 7107 0.0745 0.0285 0.0339
0.6159 14.0 7654 0.0765 0.0264 0.0321
0.5839 15.0 8201 0.0652 0.0253 0.0307
0.5578 16.0 8748 0.0672 0.0236 0.0281
0.5259 17.0 9294 0.0664 0.0231 0.0270
0.5011 18.0 9841 0.0656 0.0215 0.0254
0.4755 19.0 10388 0.0674 0.0206 0.0239
0.4471 20.0 10935 0.0649 0.0203 0.0242
0.4276 21.0 11481 0.0636 0.0202 0.0229
0.4065 22.0 12028 0.0589 0.0183 0.0214
0.3889 23.0 12575 0.0554 0.0179 0.0210
0.3695 24.0 13122 0.0572 0.0171 0.0202
0.3536 25.0 13668 0.0551 0.0167 0.0189
0.3385 26.0 14215 0.0604 0.0169 0.0197
0.3276 27.0 14762 0.0581 0.0157 0.0183
0.3174 28.0 15309 0.0564 0.0157 0.0181
0.3093 29.0 15855 0.0564 0.0153 0.0180
0.3017 29.96 16380 0.0558 0.0156 0.0184

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 1.18.3
  • Tokenizers 0.13.3