nthakur's picture
End of training
b1f93b1 verified
metadata
license: other
library_name: peft
tags:
  - alignment-handbook
  - trl
  - sft
  - generated_from_trainer
  - trl
  - sft
  - generated_from_trainer
datasets:
  - nthakur/miracl-raft-sft-instruct-v0.1
  - nthakur/nomiracl-raft-sft-instruct-v0.1
  - nthakur/miracl-en-x-raft-sft-instruct-v0.1
  - nthakur/miracl-x-en-raft-sft-instruct-v0.1
base_model: meta-llama/Meta-Llama-3-8B-Instruct
model-index:
  - name: Meta-Llama-3-8B-Instruct-miracl-mix-raft-sft-25th-apr-v1.0
    results: []

Meta-Llama-3-8B-Instruct-miracl-mix-raft-sft-25th-apr-v1.0

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the nthakur/miracl-raft-sft-instruct-v0.1, the nthakur/nomiracl-raft-sft-instruct-v0.1, the nthakur/miracl-en-x-raft-sft-instruct-v0.1 and the nthakur/miracl-x-en-raft-sft-instruct-v0.1 datasets. It achieves the following results on the evaluation set:

  • Loss: 1.3064

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.4903 0.09 200 1.3961
1.465 0.18 400 1.3499
1.4193 0.28 600 1.3330
1.3593 0.37 800 1.3232
1.3552 0.46 1000 1.3166
1.3685 0.55 1200 1.3123
1.3487 0.64 1400 1.3094
1.3891 0.74 1600 1.3076
1.3858 0.83 1800 1.3067
1.3635 0.92 2000 1.3064

Framework versions

  • PEFT 0.10.0
  • Transformers 4.39.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2