nthakur's picture
End of training
50ab1fe verified
---
license: apache-2.0
library_name: peft
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
base_model: mistralai/Mistral-7B-Instruct-v0.2
datasets:
- nthakur/mirage-mistral-sft-instruct
model-index:
- name: Mistral-7B-Instruct-v0.2-mirage-mistral-sft-instruct
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Mistral-7B-Instruct-v0.2-mirage-mistral-sft-instruct
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the nthakur/mirage-mistral-sft-instruct dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2758
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.2844 | 0.2480 | 200 | 0.3115 |
| 0.2638 | 0.4960 | 400 | 0.2921 |
| 0.2596 | 0.7440 | 600 | 0.2790 |
| 0.2458 | 0.9919 | 800 | 0.2758 |
### Framework versions
- PEFT 0.7.1
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1