You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

Configuration Parsing Warning: In adapter_config.json: "peft.task_type" must be a string

whisper-large-v3-ami-1

This model is a fine-tuned version of openai/whisper-large-v3 on the ntnu-smil/ami-1s-ft dataset. It achieves the following results on the evaluation set:

  • Loss: 3.6457
  • Wer: 73.2830
  • Cer: 65.1890
  • Decode Runtime: 3.7197
  • Wer Runtime: 0.0090
  • Cer Runtime: 0.0152

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 1024
  • optimizer: Use adamw_torch with betas=(0.9,0.98) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 130

Training results

Training Loss Epoch Step Validation Loss Wer Cer Decode Runtime Wer Runtime Cer Runtime
2.2365 0.0769 10 3.2101 71.2225 305.1720 5.7416 0.0099 0.0322
1.9464 0.1538 20 3.1678 81.2843 319.6875 5.8313 0.0098 0.0337
1.5994 0.2308 30 3.0765 106.4904 341.3692 5.8220 0.0105 0.0351
1.1357 0.3077 40 3.2982 129.5330 214.6070 5.6144 0.0102 0.0259
0.4404 0.3846 50 3.4638 72.2871 98.6465 3.8830 0.0093 0.0179
0.3252 0.4615 60 3.3927 65.1099 80.9729 3.7645 0.0091 0.0167
0.3713 1.0231 70 3.4800 58.9629 49.3854 3.4950 0.0090 0.0142
0.2562 1.1 80 3.5965 54.0522 31.3522 3.3013 0.0089 0.0130
0.1821 1.1769 90 3.6241 70.4327 56.6693 3.6241 0.0089 0.0146
0.1847 1.2538 100 3.6725 66.2775 50.4512 3.6175 0.0090 0.2387
0.2257 1.3308 110 3.6518 64.8695 50.6408 3.5330 0.0090 0.0141
0.2672 1.4077 120 3.6463 69.7802 59.8928 3.6917 0.0090 0.0146
0.2578 1.4846 130 3.6457 73.2830 65.1890 3.7197 0.0090 0.0152

Framework versions

  • PEFT 0.14.0
  • Transformers 4.48.0
  • Pytorch 2.5.1
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
8
Inference Examples
Inference API (serverless) does not yet support peft models for this pipeline type.

Model tree for ntnu-smil/whisper-large-v3-ami-1

Adapter
(80)
this model

Dataset used to train ntnu-smil/whisper-large-v3-ami-1

Evaluation results