metadata
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9285714285714286
- name: Recall
type: recall
value: 0.9473241332884551
- name: F1
type: f1
value: 0.9378540486504499
- name: Accuracy
type: accuracy
value: 0.9864602342968152
bert-finetuned-ner
This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0288
- Precision: 0.9286
- Recall: 0.9473
- F1: 0.9379
- Accuracy: 0.9865
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0349 | 1.0 | 1756 | 0.0371 | 0.9023 | 0.9290 | 0.9154 | 0.9799 |
0.0187 | 2.0 | 3512 | 0.0262 | 0.9268 | 0.9461 | 0.9364 | 0.9861 |
0.0098 | 3.0 | 5268 | 0.0288 | 0.9286 | 0.9473 | 0.9379 | 0.9865 |
Framework versions
- Transformers 4.32.0
- Pytorch 2.0.1
- Datasets 2.14.4
- Tokenizers 0.13.3