|
--- |
|
license: mit |
|
language: |
|
- multilingual |
|
tags: |
|
- nlp |
|
base_model: HuggingFaceTB/SmolLM2-1.7B |
|
pipeline_tag: text-generation |
|
inference: true |
|
--- |
|
|
|
# NuExtract-1.5-smol by NuMind 🔥 |
|
|
|
NuExtract-1.5-smol is a fine-tuning of Hugging Face's [SmolLM2-1.7B](https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B), intended for structured information extraction. It uses the same training data as [NuExtract-1.5](https://huggingface.co/numind/NuExtract-1.5) and supports multiple languages, while being less than half the size (1.7B vs 3.8B). |
|
|
|
To use the model, provide an input text and a JSON template describing the information you need to extract. |
|
|
|
Note: This model is trained to prioritize pure extraction, so in most cases all text generated by the model is present as is in the original text. |
|
|
|
Check out the [blog post](https://numind.ai/blog/nuextract-1-5---multilingual-infinite-context-still-small-and-better-than-gpt-4o). |
|
|
|
Try the 3.8B model here: [Playground](https://huggingface.co/spaces/numind/NuExtract-v1.5) |
|
|
|
We also provide a tiny (0.5B) version which is based on Qwen2.5-0.5B: [NuExtract-tiny-v1.5](https://huggingface.co/numind/NuExtract-tiny-v1.5) |
|
|
|
⚠️ We recommend using NuExtract with a temperature at or very close to 0. Some inference frameworks, such as Ollama, use a default of 0.7 which is not well suited to pure extraction tasks. |
|
|
|
## Benchmark |
|
|
|
Zero-shot performance (English): |
|
|
|
<p align="left"> |
|
<img src="english_bench.png" style="height: auto;"> |
|
</p> |
|
|
|
Zero-shot performance (Multilingual): |
|
|
|
<p align="left"> |
|
<img src="multilingual_bench.png" style="height: auto;"> |
|
</p> |
|
|
|
## Usage |
|
|
|
To use the model: |
|
|
|
```python |
|
import json |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
def predict_NuExtract(model, tokenizer, texts, template, batch_size=1, max_length=10_000, max_new_tokens=4_000): |
|
template = json.dumps(json.loads(template), indent=4) |
|
prompts = [f"""<|input|>\n### Template:\n{template}\n### Text:\n{text}\n\n<|output|>""" for text in texts] |
|
|
|
outputs = [] |
|
with torch.no_grad(): |
|
for i in range(0, len(prompts), batch_size): |
|
batch_prompts = prompts[i:i+batch_size] |
|
batch_encodings = tokenizer(batch_prompts, return_tensors="pt", truncation=True, padding=True, max_length=max_length).to(model.device) |
|
|
|
pred_ids = model.generate(**batch_encodings, max_new_tokens=max_new_tokens) |
|
outputs += tokenizer.batch_decode(pred_ids, skip_special_tokens=True) |
|
|
|
return [output.split("<|output|>")[1] for output in outputs] |
|
|
|
model_name = "numind/NuExtract-1.5-smol" |
|
device = "cuda" |
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, trust_remote_code=True).to(device).eval() |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) |
|
|
|
text = """We introduce Mistral 7B, a 7–billion-parameter language model engineered for |
|
superior performance and efficiency. Mistral 7B outperforms the best open 13B |
|
model (Llama 2) across all evaluated benchmarks, and the best released 34B |
|
model (Llama 1) in reasoning, mathematics, and code generation. Our model |
|
leverages grouped-query attention (GQA) for faster inference, coupled with sliding |
|
window attention (SWA) to effectively handle sequences of arbitrary length with a |
|
reduced inference cost. We also provide a model fine-tuned to follow instructions, |
|
Mistral 7B – Instruct, that surpasses Llama 2 13B – chat model both on human and |
|
automated benchmarks. Our models are released under the Apache 2.0 license. |
|
Code: <https://github.com/mistralai/mistral-src> |
|
Webpage: <https://mistral.ai/news/announcing-mistral-7b/>""" |
|
|
|
template = """{ |
|
"Model": { |
|
"Name": "", |
|
"Number of parameters": "", |
|
"Number of max token": "", |
|
"Architecture": [] |
|
}, |
|
"Usage": { |
|
"Use case": [], |
|
"Licence": "" |
|
} |
|
}""" |
|
|
|
prediction = predict_NuExtract(model, tokenizer, [text], template)[0] |
|
print(prediction) |
|
|
|
``` |
|
|
|
Sliding window prompting: |
|
|
|
```python |
|
import json |
|
|
|
MAX_INPUT_SIZE = 20_000 |
|
MAX_NEW_TOKENS = 6000 |
|
|
|
def clean_json_text(text): |
|
text = text.strip() |
|
text = text.replace("\#", "#").replace("\&", "&") |
|
return text |
|
|
|
def predict_chunk(text, template, current, model, tokenizer): |
|
current = clean_json_text(current) |
|
|
|
input_llm = f"<|input|>\n### Template:\n{template}\n### Current:\n{current}\n### Text:\n{text}\n\n<|output|>" + "{" |
|
input_ids = tokenizer(input_llm, return_tensors="pt", truncation=True, max_length=MAX_INPUT_SIZE).to("cuda") |
|
output = tokenizer.decode(model.generate(**input_ids, max_new_tokens=MAX_NEW_TOKENS)[0], skip_special_tokens=True) |
|
|
|
return clean_json_text(output.split("<|output|>")[1]) |
|
|
|
def split_document(document, window_size, overlap): |
|
tokens = tokenizer.tokenize(document) |
|
print(f"\tLength of document: {len(tokens)} tokens") |
|
|
|
chunks = [] |
|
if len(tokens) > window_size: |
|
for i in range(0, len(tokens), window_size-overlap): |
|
print(f"\t{i} to {i + len(tokens[i:i + window_size])}") |
|
chunk = tokenizer.convert_tokens_to_string(tokens[i:i + window_size]) |
|
chunks.append(chunk) |
|
|
|
if i + len(tokens[i:i + window_size]) >= len(tokens): |
|
break |
|
else: |
|
chunks.append(document) |
|
print(f"\tSplit into {len(chunks)} chunks") |
|
|
|
return chunks |
|
|
|
def handle_broken_output(pred, prev): |
|
try: |
|
if all([(v in ["", []]) for v in json.loads(pred).values()]): |
|
# if empty json, return previous |
|
pred = prev |
|
except: |
|
# if broken json, return previous |
|
pred = prev |
|
|
|
return pred |
|
|
|
def sliding_window_prediction(text, template, model, tokenizer, window_size=4000, overlap=128): |
|
# split text into chunks of n tokens |
|
tokens = tokenizer.tokenize(text) |
|
chunks = split_document(text, window_size, overlap) |
|
|
|
# iterate over text chunks |
|
prev = template |
|
for i, chunk in enumerate(chunks): |
|
print(f"Processing chunk {i}...") |
|
pred = predict_chunk(chunk, template, prev, model, tokenizer) |
|
|
|
# handle broken output |
|
pred = handle_broken_output(pred, prev) |
|
|
|
# iterate |
|
prev = pred |
|
|
|
return pred |
|
``` |