|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import Optional, Tuple |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import is_torch_available, logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
|
|
def _compute_default_rope_parameters( |
|
config: Optional[PretrainedConfig] = None, |
|
device: Optional["torch.device"] = None, |
|
seq_len: Optional[int] = None, |
|
**rope_kwargs, |
|
) -> Tuple["torch.Tensor", float]: |
|
""" |
|
Computes the inverse frequencies according to the original RoPE implementation |
|
Args: |
|
config ([`~transformers.PretrainedConfig`]): |
|
The model configuration. |
|
device (`torch.device`): |
|
The device to use for initialization of the inverse frequencies. |
|
seq_len (`int`, *optional*): |
|
The current sequence length. Unused for this type of RoPE. |
|
rope_kwargs (`Dict`, *optional*): |
|
BC compatibility with the previous RoPE class instantiation, will be removed in v4.45. |
|
Returns: |
|
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the |
|
post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE). |
|
""" |
|
if config is not None and len(rope_kwargs) > 0: |
|
raise ValueError( |
|
"Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in " |
|
f"`_compute_default_rope_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}" |
|
) |
|
if len(rope_kwargs) > 0: |
|
base = rope_kwargs["base"] |
|
dim = rope_kwargs["dim"] |
|
elif config is not None: |
|
base = config.rope_theta |
|
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0 |
|
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) |
|
dim = int(head_dim * partial_rotary_factor) |
|
|
|
attention_factor = 1.0 |
|
|
|
|
|
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float().to(device) / dim)) |
|
return inv_freq, attention_factor |
|
|
|
|
|
def _compute_linear_scaling_rope_parameters( |
|
config: Optional[PretrainedConfig] = None, |
|
device: Optional["torch.device"] = None, |
|
seq_len: Optional[int] = None, |
|
**rope_kwargs, |
|
) -> Tuple["torch.Tensor", float]: |
|
""" |
|
Computes the inverse frequencies with linear scaling. Credits to the Reddit user /u/kaiokendev |
|
Args: |
|
config ([`~transformers.PretrainedConfig`]): |
|
The model configuration. |
|
device (`torch.device`): |
|
The device to use for initialization of the inverse frequencies. |
|
seq_len (`int`, *optional*): |
|
The current sequence length. Unused for this type of RoPE. |
|
rope_kwargs (`Dict`, *optional*): |
|
BC compatibility with the previous RoPE class instantiation, will be removed in v4.45. |
|
Returns: |
|
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the |
|
post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE). |
|
""" |
|
if config is not None and len(rope_kwargs) > 0: |
|
raise ValueError( |
|
"Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in " |
|
f"`_compute_linear_scaling_rope_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}" |
|
) |
|
if len(rope_kwargs) > 0: |
|
factor = rope_kwargs["factor"] |
|
elif config is not None: |
|
factor = config.rope_scaling["factor"] |
|
|
|
|
|
inv_freq, attention_factor = _compute_default_rope_parameters(config, device, seq_len, **rope_kwargs) |
|
|
|
|
|
|
|
|
|
inv_freq /= factor |
|
return inv_freq, attention_factor |
|
|
|
|
|
def _compute_dynamic_ntk_parameters( |
|
config: Optional[PretrainedConfig] = None, |
|
device: Optional["torch.device"] = None, |
|
seq_len: Optional[int] = None, |
|
**rope_kwargs, |
|
) -> Tuple["torch.Tensor", float]: |
|
""" |
|
Computes the inverse frequencies with NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla |
|
Args: |
|
config ([`~transformers.PretrainedConfig`]): |
|
The model configuration. |
|
device (`torch.device`): |
|
The device to use for initialization of the inverse frequencies. |
|
seq_len (`int`, *optional*): |
|
The current sequence length, used to update the dynamic RoPE at inference time. |
|
rope_kwargs (`Dict`, *optional*): |
|
BC compatibility with the previous RoPE class instantiation, will be removed in v4.45. |
|
Returns: |
|
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the |
|
post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE). |
|
""" |
|
|
|
if config is not None and len(rope_kwargs) > 0: |
|
raise ValueError( |
|
"Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in " |
|
f"`_compute_dynamic_ntk_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}" |
|
) |
|
if len(rope_kwargs) > 0: |
|
base = rope_kwargs["base"] |
|
dim = rope_kwargs["dim"] |
|
max_position_embeddings = rope_kwargs["max_position_embeddings"] |
|
factor = rope_kwargs["factor"] |
|
elif config is not None: |
|
base = config.rope_theta |
|
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0 |
|
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) |
|
dim = int(head_dim * partial_rotary_factor) |
|
max_position_embeddings = config.max_position_embeddings |
|
factor = config.rope_scaling["factor"] |
|
|
|
attention_factor = 1.0 |
|
|
|
|
|
seq_len = seq_len if seq_len is not None and seq_len > max_position_embeddings else max_position_embeddings |
|
|
|
|
|
base = base * ((factor * seq_len / max_position_embeddings) - (factor - 1)) ** (dim / (dim - 2)) |
|
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float().to(device) / dim)) |
|
return inv_freq, attention_factor |
|
|
|
|
|
def _compute_yarn_parameters( |
|
config: PretrainedConfig, device: "torch.device", seq_len: Optional[int] = None, **rope_kwargs |
|
) -> Tuple["torch.Tensor", float]: |
|
""" |
|
Computes the inverse frequencies with NTK scaling. Please refer to the |
|
[original paper](https://arxiv.org/abs/2309.00071) |
|
Args: |
|
config ([`~transformers.PretrainedConfig`]): |
|
The model configuration. |
|
device (`torch.device`): |
|
The device to use for initialization of the inverse frequencies. |
|
seq_len (`int`, *optional*): |
|
The current sequence length. Unused for this type of RoPE. |
|
rope_kwargs (`Dict`, *optional*): |
|
BC compatibility with the previous RoPE class instantiation, will be removed in v4.45. |
|
Returns: |
|
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the |
|
post-processing scaling factor applied to the computed cos/sin. |
|
""" |
|
|
|
if len(rope_kwargs) > 0: |
|
raise ValueError( |
|
f"Unexpected arguments: `**rope_kwargs` should be unset in `_compute_yarn_parameters`, got {rope_kwargs}" |
|
) |
|
|
|
base = config.rope_theta |
|
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0 |
|
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) |
|
dim = int(head_dim * partial_rotary_factor) |
|
max_position_embeddings = config.max_position_embeddings |
|
factor = config.rope_scaling["factor"] |
|
|
|
|
|
attention_factor = config.rope_scaling.get("attention_factor") |
|
if attention_factor is None: |
|
attention_factor = 0.1 * math.log(factor) + 1.0 |
|
|
|
|
|
|
|
beta_fast = config.rope_scaling.get("beta_fast") or 32 |
|
beta_slow = config.rope_scaling.get("beta_slow") or 1 |
|
|
|
|
|
def find_correction_dim(num_rotations, dim, base, max_position_embeddings): |
|
"""Inverse dimension formula to find the dimension based on the number of rotations""" |
|
return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (2 * math.log(base)) |
|
|
|
def find_correction_range(low_rot, high_rot, dim, base, max_position_embeddings): |
|
"""Find dimension range bounds based on rotations""" |
|
low = math.floor(find_correction_dim(low_rot, dim, base, max_position_embeddings)) |
|
high = math.ceil(find_correction_dim(high_rot, dim, base, max_position_embeddings)) |
|
return max(low, 0), min(high, dim - 1) |
|
|
|
def linear_ramp_factor(min, max, dim): |
|
if min == max: |
|
max += 0.001 |
|
|
|
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min) |
|
ramp_func = torch.clamp(linear_func, 0, 1) |
|
return ramp_func |
|
|
|
|
|
|
|
pos_freqs = base ** (torch.arange(0, dim, 2).float().to(device) / dim) |
|
inv_freq_extrapolation = 1.0 / pos_freqs |
|
inv_freq_interpolation = 1.0 / (factor * pos_freqs) |
|
|
|
low, high = find_correction_range(beta_fast, beta_slow, dim, base, max_position_embeddings) |
|
|
|
|
|
inv_freq_extrapolation_factor = 1 - linear_ramp_factor(low, high, dim // 2).float().to(device) |
|
inv_freq = ( |
|
inv_freq_interpolation * (1 - inv_freq_extrapolation_factor) |
|
+ inv_freq_extrapolation * inv_freq_extrapolation_factor |
|
) |
|
|
|
return inv_freq, attention_factor |
|
|
|
|
|
def _compute_longrope_parameters( |
|
config: PretrainedConfig, device: "torch.device", seq_len: Optional[int] = None, **rope_kwargs |
|
) -> Tuple["torch.Tensor", float]: |
|
""" |
|
Computes the inverse frequencies with LongRoPE scaling. Please refer to the |
|
[original implementation](https://github.com/microsoft/LongRoPE) |
|
Args: |
|
config ([`~transformers.PretrainedConfig`]): |
|
The model configuration. |
|
device (`torch.device`): |
|
The device to use for initialization of the inverse frequencies. |
|
seq_len (`int`, *optional*): |
|
The current sequence length. Unused for this type of RoPE. |
|
rope_kwargs (`Dict`, *optional*): |
|
BC compatibility with the previous RoPE class instantiation, will be removed in v4.45. |
|
Returns: |
|
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the |
|
post-processing scaling factor applied to the computed cos/sin. |
|
""" |
|
|
|
|
|
if len(rope_kwargs) > 0: |
|
raise ValueError( |
|
"Unexpected arguments: `**rope_kwargs` should be unset in `_compute_longrope_parameters`, got " |
|
f"{rope_kwargs}" |
|
) |
|
|
|
base = config.rope_theta |
|
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0 |
|
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) |
|
dim = int(head_dim * partial_rotary_factor) |
|
long_factor = config.rope_scaling["long_factor"] |
|
short_factor = config.rope_scaling["short_factor"] |
|
factor = config.rope_scaling.get("factor") |
|
attention_factor = config.rope_scaling.get("attention_factor") |
|
|
|
|
|
|
|
|
|
if hasattr(config, "original_max_position_embeddings"): |
|
max_position_embeddings = config.original_max_position_embeddings |
|
expanded_max_position_embeddings = config.max_position_embeddings |
|
factor = expanded_max_position_embeddings / max_position_embeddings |
|
else: |
|
max_position_embeddings = config.max_position_embeddings |
|
expanded_max_position_embeddings = max_position_embeddings * factor |
|
|
|
|
|
if attention_factor is None: |
|
if factor <= 1.0: |
|
attention_factor = 1.0 |
|
else: |
|
attention_factor = math.sqrt(1 + math.log(factor) / math.log(max_position_embeddings)) |
|
|
|
|
|
if expanded_max_position_embeddings > max_position_embeddings: |
|
ext_factors = torch.tensor(long_factor, dtype=torch.float32, device=device) |
|
else: |
|
ext_factors = torch.tensor(short_factor, dtype=torch.float32, device=device) |
|
inv_freq_shape = torch.arange(0, dim, 2, dtype=torch.int64, device=device).float() / dim |
|
inv_freq = 1.0 / (ext_factors * base**inv_freq_shape) |
|
|
|
return inv_freq, attention_factor |
|
|
|
|
|
def _compute_llama3_parameters( |
|
config: PretrainedConfig, device: "torch.device", seq_len: Optional[int] = None, **rope_kwargs |
|
) -> Tuple["torch.Tensor", float]: |
|
""" |
|
Computes the inverse frequencies for llama 3.1. |
|
|
|
Args: |
|
config ([`~transformers.PretrainedConfig`]): |
|
The model configuration. |
|
device (`torch.device`): |
|
The device to use for initialization of the inverse frequencies. |
|
seq_len (`int`, *optional*): |
|
The current sequence length. Unused for this type of RoPE. |
|
rope_kwargs (`Dict`, *optional*): |
|
BC compatibility with the previous RoPE class instantiation, will be removed in v4.45. |
|
Returns: |
|
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the |
|
post-processing scaling factor applied to the computed cos/sin. |
|
""" |
|
|
|
inv_freq, attention_factor = _compute_default_rope_parameters(config, device, seq_len, **rope_kwargs) |
|
|
|
factor = config.rope_scaling["factor"] |
|
low_freq_factor = config.rope_scaling["low_freq_factor"] |
|
high_freq_factor = config.rope_scaling["high_freq_factor"] |
|
old_context_len = config.rope_scaling["original_max_position_embeddings"] |
|
|
|
low_freq_wavelen = old_context_len / low_freq_factor |
|
high_freq_wavelen = old_context_len / high_freq_factor |
|
|
|
wavelen = 2 * math.pi / inv_freq |
|
|
|
|
|
inv_freq_llama = torch.where(wavelen > low_freq_wavelen, inv_freq / factor, inv_freq) |
|
|
|
smooth_factor = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor) |
|
smoothed_inv_freq = (1 - smooth_factor) * inv_freq_llama / factor + smooth_factor * inv_freq_llama |
|
is_medium_freq = ~(wavelen < high_freq_wavelen) * ~(wavelen > low_freq_wavelen) |
|
inv_freq_llama = torch.where(is_medium_freq, smoothed_inv_freq, inv_freq_llama) |
|
|
|
return inv_freq_llama, attention_factor |
|
|
|
|
|
|
|
|
|
|
|
ROPE_INIT_FUNCTIONS = { |
|
"default": _compute_default_rope_parameters, |
|
"linear": _compute_linear_scaling_rope_parameters, |
|
"dynamic": _compute_dynamic_ntk_parameters, |
|
"yarn": _compute_yarn_parameters, |
|
"longrope": _compute_longrope_parameters, |
|
"llama3": _compute_llama3_parameters, |
|
} |
|
|
|
|
|
def _check_received_keys(rope_type: str, received_keys: set, required_keys: set, optional_keys: Optional[set] = None): |
|
"""Compare the received keys in `config.rope_scaling` against the expected and optional keys""" |
|
|
|
if "rope_type" not in received_keys and "type" in received_keys: |
|
received_keys -= {"type"} |
|
received_keys.add("rope_type") |
|
|
|
missing_keys = required_keys - received_keys |
|
if missing_keys: |
|
raise KeyError(f"Missing required keys in `rope_scaling` for 'rope_type'='{rope_type}': {missing_keys}") |
|
|
|
if optional_keys is not None: |
|
unused_keys = received_keys - required_keys - optional_keys |
|
else: |
|
unused_keys = received_keys - required_keys |
|
if unused_keys: |
|
logger.warning(f"Unrecognized keys in `rope_scaling` for 'rope_type'='{rope_type}': {unused_keys}") |
|
|
|
|
|
def _validate_default_rope_parameters(config: PretrainedConfig): |
|
rope_scaling = config.rope_scaling |
|
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) |
|
required_keys = {"rope_type"} |
|
received_keys = set(rope_scaling.keys()) |
|
_check_received_keys(rope_type, received_keys, required_keys) |
|
|
|
|
|
def _validate_linear_scaling_rope_parameters(config: PretrainedConfig): |
|
rope_scaling = config.rope_scaling |
|
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) |
|
required_keys = {"rope_type", "factor"} |
|
received_keys = set(rope_scaling.keys()) |
|
_check_received_keys(rope_type, received_keys, required_keys) |
|
|
|
factor = rope_scaling["factor"] |
|
if factor is None or not isinstance(factor, float) or factor < 1.0: |
|
logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}") |
|
|
|
|
|
def _validate_dynamic_scaling_rope_parameters(config: PretrainedConfig): |
|
rope_scaling = config.rope_scaling |
|
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) |
|
required_keys = {"rope_type", "factor"} |
|
|
|
optional_keys = {"original_max_position_embeddings"} |
|
received_keys = set(rope_scaling.keys()) |
|
_check_received_keys(rope_type, received_keys, required_keys, optional_keys) |
|
|
|
factor = rope_scaling["factor"] |
|
if factor is None or not isinstance(factor, float) or factor < 1.0: |
|
logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}") |
|
|
|
|
|
def _validate_yarn_parameters(config: PretrainedConfig): |
|
rope_scaling = config.rope_scaling |
|
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) |
|
required_keys = {"rope_type", "factor"} |
|
optional_keys = {"attention_factor", "beta_fast", "beta_slow"} |
|
received_keys = set(rope_scaling.keys()) |
|
_check_received_keys(rope_type, received_keys, required_keys, optional_keys) |
|
|
|
factor = rope_scaling["factor"] |
|
if factor is None or not isinstance(factor, float) or factor < 1.0: |
|
logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}") |
|
|
|
attention_factor = rope_scaling.get("attention_factor") |
|
if attention_factor is not None and (not isinstance(attention_factor, float) or attention_factor < 0): |
|
logger.warning( |
|
f"`rope_scaling`'s attention_factor field must be a float greater than 0, got {attention_factor}" |
|
) |
|
beta_fast = rope_scaling.get("beta_fast") |
|
if beta_fast is not None and not isinstance(beta_fast, float): |
|
logger.warning(f"`rope_scaling`'s beta_fast field must be a float, got {beta_fast}") |
|
beta_slow = rope_scaling.get("beta_slow") |
|
if beta_slow is not None and not isinstance(beta_slow, float): |
|
logger.warning(f"`rope_scaling`'s beta_slow field must be a float, got {beta_slow}") |
|
|
|
if (beta_fast or 32) < (beta_slow or 1): |
|
logger.warning( |
|
f"`rope_scaling`'s beta_fast field must be greater than beta_slow, got beta_fast={beta_fast} " |
|
f"(defaults to 32 if None) and beta_slow={beta_slow} (defaults to 1 if None)" |
|
) |
|
|
|
|
|
def _validate_longrope_parameters(config: PretrainedConfig): |
|
rope_scaling = config.rope_scaling |
|
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) |
|
required_keys = {"rope_type", "short_factor", "long_factor"} |
|
|
|
optional_keys = {"attention_factor", "factor", "original_max_position_embeddings"} |
|
received_keys = set(rope_scaling.keys()) |
|
_check_received_keys(rope_type, received_keys, required_keys, optional_keys) |
|
|
|
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0 |
|
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) |
|
dim = int(head_dim * partial_rotary_factor) |
|
|
|
short_factor = rope_scaling.get("short_factor") |
|
if not isinstance(short_factor, list) and all(isinstance(x, (int, float)) for x in short_factor): |
|
logger.warning(f"`rope_scaling`'s short_factor field must be a list of numbers, got {short_factor}") |
|
if not len(short_factor) == dim // 2: |
|
logger.warning(f"`rope_scaling`'s short_factor field must have length {dim // 2}, got {len(short_factor)}") |
|
|
|
long_factor = rope_scaling.get("long_factor") |
|
if not isinstance(long_factor, list) and all(isinstance(x, (int, float)) for x in long_factor): |
|
logger.warning(f"`rope_scaling`'s long_factor field must be a list of numbers, got {long_factor}") |
|
if not len(long_factor) == dim // 2: |
|
logger.warning(f"`rope_scaling`'s long_factor field must have length {dim // 2}, got {len(long_factor)}") |
|
|
|
|
|
|
|
|
|
if hasattr(config, "original_max_position_embeddings"): |
|
logger.warning_once( |
|
"This model has set a `original_max_position_embeddings` field, to be used together with " |
|
"`max_position_embeddings` to determine a scaling factor. Please set the `factor` field of `rope_scaling`" |
|
"with this ratio instead -- we recommend the use of this field over `original_max_position_embeddings`, " |
|
"as it is compatible with most model architectures." |
|
) |
|
else: |
|
factor = rope_scaling.get("factor") |
|
if factor is None: |
|
logger.warning("Missing required keys in `rope_scaling`: 'factor'") |
|
elif not isinstance(factor, float) or factor < 1.0: |
|
logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}") |
|
|
|
attention_factor = rope_scaling.get("attention_factor") |
|
if attention_factor is not None and not isinstance(attention_factor, float) or attention_factor < 0: |
|
logger.warning( |
|
f"`rope_scaling`'s attention_factor field must be a float greater than 0, got {attention_factor}" |
|
) |
|
|
|
|
|
def _validate_llama3_parameters(config: PretrainedConfig): |
|
rope_scaling = config.rope_scaling |
|
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) |
|
required_keys = {"rope_type", "factor", "original_max_position_embeddings", "low_freq_factor", "high_freq_factor"} |
|
received_keys = set(rope_scaling.keys()) |
|
_check_received_keys(rope_type, received_keys, required_keys) |
|
|
|
factor = rope_scaling["factor"] |
|
if factor is None or not isinstance(factor, float) or factor < 1.0: |
|
logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}") |
|
|
|
low_freq_factor = rope_scaling["low_freq_factor"] |
|
high_freq_factor = rope_scaling["high_freq_factor"] |
|
if low_freq_factor is None or not isinstance(low_freq_factor, float): |
|
logger.warning(f"`rope_scaling`'s low_freq_factor field must be a float, got {low_freq_factor}") |
|
if high_freq_factor is None or not isinstance(high_freq_factor, float): |
|
logger.warning(f"`rope_scaling`'s high_freq_factor field must be a float, got {high_freq_factor}") |
|
if high_freq_factor <= low_freq_factor: |
|
logger.warning( |
|
"`rope_scaling`'s high_freq_factor field must be greater than low_freq_factor, got high_freq_factor=" |
|
f"{high_freq_factor} and low_freq_factor={low_freq_factor}" |
|
) |
|
|
|
original_max_position_embeddings = rope_scaling["original_max_position_embeddings"] |
|
if original_max_position_embeddings is None or not isinstance(original_max_position_embeddings, int): |
|
logger.warning( |
|
"`rope_scaling`'s original_max_position_embeddings field must be an integer, got " |
|
f"{original_max_position_embeddings}" |
|
) |
|
if original_max_position_embeddings >= config.max_position_embeddings: |
|
logger.warning( |
|
"`rope_scaling`'s original_max_position_embeddings field must be less than max_position_embeddings, got " |
|
f"{original_max_position_embeddings} and max_position_embeddings={config.max_position_embeddings}" |
|
) |
|
|
|
|
|
|
|
ROPE_VALIDATION_FUNCTIONS = { |
|
"default": _validate_default_rope_parameters, |
|
"linear": _validate_linear_scaling_rope_parameters, |
|
"dynamic": _validate_dynamic_scaling_rope_parameters, |
|
"yarn": _validate_yarn_parameters, |
|
"longrope": _validate_longrope_parameters, |
|
"llama3": _validate_llama3_parameters, |
|
} |
|
|
|
|
|
def rope_config_validation(config: PretrainedConfig): |
|
""" |
|
Validate the RoPE config arguments, given a `PretrainedConfig` object |
|
""" |
|
rope_scaling = getattr(config, "rope_scaling", None) |
|
if rope_scaling is None: |
|
return |
|
|
|
|
|
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", "default")) |
|
validation_fn = ROPE_VALIDATION_FUNCTIONS.get(rope_type) |
|
if validation_fn is not None: |
|
validation_fn(config) |
|
else: |
|
logger.warning( |
|
f"Missing validation function mapping in `ROPE_VALIDATION_FUNCTIONS` for 'rope_type'='{rope_type}'" |
|
) |
|
|