Testing model
You can test the model on https://huggingface.co/spaces/nvomai/nvom-phi-3.5-mini-3b
q4_k_m to more optimize!
Phi 3.5 mini by Microsoft and Optimized by NVOM.ai
Benchmarks:
NVOM.ai AIBench SmartBench Specials (Based on NVOM.ai bench)
NVOM Preview 4b 7.91 10.12 9.49 Speed, Smart, Quanatisation
Phi 3.5 mini 5.31 4.95 6.31 Smart, Speed
Gemma 2 9b (original) 3.76 2.11 2.93 Quanatisation, Smart
1-4 - bad
5-8 - normal
8-12 - best
Loading the model locally
After obtaining the Phi-3.5-mini-instruct model checkpoint, users can use this sample code for inference.
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
torch.random.manual_seed(0)
model = AutoModelForCausalLM.from_pretrained(
"nvomai/nvom-preview-4b",
device_map="cuda",
torch_dtype="auto",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-mini-instruct")
messages = [
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"},
{"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."},
{"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"},
]
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
)
generation_args = {
"max_new_tokens": 500,
"return_full_text": False,
"temperature": 0.0,
"do_sample": False,
}
output = pipe(messages, **generation_args)
print(output[0]['generated_text'])