File size: 1,903 Bytes
6547f82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: mit
base_model: xlnet-large-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: xlnet-lg-cased-ms-ner-test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlnet-lg-cased-ms-ner-test
This model is a fine-tuned version of [xlnet-large-cased](https://huggingface.co/xlnet-large-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1308
- Precision: 0.8828
- Recall: 0.9077
- F1: 0.8951
- Accuracy: 0.9814
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.137 | 1.0 | 3615 | 0.1313 | 0.7971 | 0.7986 | 0.7979 | 0.9663 |
| 0.0761 | 2.0 | 7230 | 0.0894 | 0.8564 | 0.8773 | 0.8667 | 0.9781 |
| 0.0459 | 3.0 | 10845 | 0.0946 | 0.8718 | 0.8918 | 0.8817 | 0.9803 |
| 0.021 | 4.0 | 14460 | 0.1091 | 0.8795 | 0.9017 | 0.8905 | 0.9808 |
| 0.013 | 5.0 | 18075 | 0.1308 | 0.8828 | 0.9077 | 0.8951 | 0.9814 |
### Framework versions
- Transformers 4.39.3
- Pytorch 1.12.0
- Datasets 2.18.0
- Tokenizers 0.15.2
|