metadata
base_model: sentence-transformers/paraphrase-xlm-r-multilingual-v1
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:38739
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: '''Turks ve Caicos Adaları''ndaki Afrikalıların nüfusu nedir?'
sentences:
- |-
CREATE TABLEethnicGroup (
Country TEXT,
Name TEXT PRIMARY KEY,
Percentage REAL,
FOREIGN KEY (Country) REFERENCES country(None)
);
- |-
CREATE TABLEPatient (
ID INTEGER PRIMARY KEY,
SEX TEXT,
Birthday DATE,
Description DATE,
First Date DATE,
Admission TEXT,
Diagnosis TEXT
);
- |-
CREATE TABLEwrites (
paperId INTEGER PRIMARY KEY,
authorId INTEGER,
FOREIGN KEY (authorId) REFERENCES author(authorId),
FOREIGN KEY (paperId) REFERENCES paper(paperId)
);
- source_sentence: Teksas'ın başkenti nedir
sentences:
- |-
CREATE TABLEprofessor (
EMP_NUM INT,
DEPT_CODE varchar(10),
PROF_OFFICE varchar(50),
PROF_EXTENSION varchar(4),
PROF_HIGH_DEGREE varchar(5),
FOREIGN KEY (DEPT_CODE) REFERENCES DEPARTMENT(DEPT_CODE),
FOREIGN KEY (EMP_NUM) REFERENCES EMPLOYEE(EMP_NUM)
);
- |-
CREATE TABLEBusiness_Hours (
business_id INTEGER PRIMARY KEY,
day_id INTEGER,
opening_time TEXT,
closing_time TEXT,
FOREIGN KEY (day_id) REFERENCES Days(None),
FOREIGN KEY (business_id) REFERENCES Business(None)
);
- |-
CREATE TABLEstate (
state_name TEXT PRIMARY KEY,
population INTEGER,
area double,
country_name varchar(3),
capital TEXT,
density double
);
- source_sentence: >-
'Mad Max: Fury Road' filminde çalışan 10 ekibin işlerinin yanı sıra
listeleyin.
sentences:
- |-
CREATE TABLEmovie (
movie_id INTEGER PRIMARY KEY,
title TEXT,
budget INTEGER,
homepage TEXT,
overview TEXT,
popularity REAL,
release_date DATE,
revenue INTEGER,
runtime INTEGER,
movie_status TEXT,
tagline TEXT,
vote_average REAL,
vote_count INTEGER
);
- |-
CREATE TABLEstudent (
STU_NUM INT PRIMARY KEY,
STU_LNAME varchar(15),
STU_FNAME varchar(15),
STU_INIT varchar(1),
STU_DOB datetime,
STU_HRS INT,
STU_CLASS varchar(2),
STU_GPA float(8),
STU_TRANSFER numeric,
DEPT_CODE varchar(18),
STU_PHONE varchar(4),
PROF_NUM INT,
FOREIGN KEY (DEPT_CODE) REFERENCES DEPARTMENT(DEPT_CODE)
);
- |-
CREATE TABLEFinancial_transactions (
transaction_id INTEGER,
account_id INTEGER,
invoice_number INTEGER,
transaction_type VARCHAR(15),
transaction_date DATETIME,
transaction_amount DECIMAL(19,4),
transaction_comment VARCHAR(255),
other_transaction_details VARCHAR(255),
FOREIGN KEY (account_id) REFERENCES Accounts(account_id),
FOREIGN KEY (invoice_number) REFERENCES Invoices(invoice_number)
);
- source_sentence: >-
Tüm müşterilerin ortalama yaşının %80'inden daha büyük yaştaki
müşterilerin gelirlerini ve sakin sayısını listeler misiniz?
sentences:
- |-
CREATE TABLECustomers (
ID INTEGER PRIMARY KEY,
SEX TEXT,
MARITAL_STATUS TEXT,
GEOID INTEGER,
EDUCATIONNUM INTEGER,
OCCUPATION TEXT,
age INTEGER,
FOREIGN KEY (GEOID) REFERENCES Demog(None)
);
- |-
CREATE TABLEauthors (
authID INTEGER PRIMARY KEY,
lname TEXT,
fname TEXT
);
- |-
CREATE TABLEcoaches (
coachID TEXT PRIMARY KEY,
year INTEGER,
tmID TEXT,
lgID TEXT,
stint INTEGER,
won INTEGER,
lost INTEGER,
post_wins INTEGER,
post_losses INTEGER,
FOREIGN KEY (tmID) REFERENCES teams(tmID),
FOREIGN KEY (year) REFERENCES teams(year)
);
- source_sentence: Eleanor Hunt'a ait kaç tane kiralama kimliği var?
sentences:
- |-
CREATE TABLEsinger (
Singer_ID INT PRIMARY KEY,
Name TEXT,
Country TEXT,
Song_Name TEXT,
Song_release_year TEXT,
Age INT,
Is_male bool
);
- |-
CREATE TABLEdistrict (
District_ID INT PRIMARY KEY,
District_name TEXT,
Headquartered_City TEXT,
City_Population REAL,
City_Area REAL
);
- |-
CREATE TABLEcustomer (
customer_id INTEGER PRIMARY KEY,
store_id INTEGER,
first_name TEXT,
last_name TEXT,
email TEXT,
address_id INTEGER,
active INTEGER,
create_date DATETIME,
last_update DATETIME,
FOREIGN KEY (address_id) REFERENCES address(None),
FOREIGN KEY (store_id) REFERENCES store(None)
);
SentenceTransformer based on sentence-transformers/paraphrase-xlm-r-multilingual-v1
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-xlm-r-multilingual-v1. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-xlm-r-multilingual-v1
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("nypgd/fine-tuned-sentence-transformer_last")
# Run inference
sentences = [
"Eleanor Hunt'a ait kaç tane kiralama kimliği var?",
'CREATE TABLEcustomer (\n customer_id INTEGER PRIMARY KEY,\n store_id INTEGER,\n first_name TEXT,\n last_name TEXT,\n email TEXT,\n address_id INTEGER,\n active INTEGER,\n create_date DATETIME,\n last_update DATETIME,\n FOREIGN KEY (address_id) REFERENCES address(None),\n FOREIGN KEY (store_id) REFERENCES store(None)\n);',
'CREATE TABLEdistrict (\n District_ID INT PRIMARY KEY,\n District_name TEXT,\n Headquartered_City TEXT,\n City_Population REAL,\n City_Area REAL\n);',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 38,739 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 7 tokens
- mean: 19.22 tokens
- max: 63 tokens
- min: 11 tokens
- mean: 73.6 tokens
- max: 128 tokens
- Samples:
sentence_0 sentence_1 en büyük alana sahip eyaleti belirtin
CREATE TABLEstate (
state_name TEXT PRIMARY KEY,
population INTEGER,
area double,
country_name varchar(3),
capital TEXT,
density double
);Law & Order'ın hangi bölümleri Primetime Emmy Ödülleri'ne aday gösterildi?
CREATE TABLEAward (
award_id INTEGER PRIMARY KEY,
organization TEXT,
year INTEGER,
award_category TEXT,
award TEXT,
series TEXT,
episode_id TEXT,
person_id TEXT,
role TEXT,
result TEXT,
FOREIGN KEY (person_id) REFERENCES Person(person_id),
FOREIGN KEY (episode_id) REFERENCES Episode(episode_id)
);Albümü "Universal Music Group" etiketi altında yer alan tüm şarkıların isimleri nelerdir?
CREATE TABLEtracklists (
AlbumId INTEGER PRIMARY KEY,
Position INTEGER,
SongId INTEGER,
FOREIGN KEY (AlbumId) REFERENCES Albums(AId),
FOREIGN KEY (SongId) REFERENCES Songs(SongId)
); - Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 1multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.2064 | 500 | 0.5621 |
0.4129 | 1000 | 0.295 |
0.6193 | 1500 | 0.2644 |
0.8258 | 2000 | 0.2035 |
1.0322 | 2500 | 0.184 |
1.2386 | 3000 | 0.1237 |
1.4451 | 3500 | 0.1008 |
1.6515 | 4000 | 0.0984 |
1.8580 | 4500 | 0.0841 |
0.2064 | 500 | 0.1214 |
0.4129 | 1000 | 0.1139 |
0.6193 | 1500 | 0.11 |
0.8258 | 2000 | 0.0999 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.4.0+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}