See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/Yarn-Solar-10b-64k
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- f69997622e88b2e2_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/f69997622e88b2e2_train_data.json
type:
field_input: Query
field_instruction: Prompt
field_output: Response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: oldiday/07842df3-503d-4d79-9f21-35a929ea2e5a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 600
micro_batch_size: 8
mlflow_experiment_name: /tmp/f69997622e88b2e2_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1.0e-05
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 512
special_tokens:
pad_token: </s>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 6ab3de9b-c6f7-4825-831d-3a8790bdd87a
wandb_project: Gradients-On-Six
wandb_run: your_name
wandb_runid: 6ab3de9b-c6f7-4825-831d-3a8790bdd87a
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
07842df3-503d-4d79-9f21-35a929ea2e5a
This model is a fine-tuned version of NousResearch/Yarn-Solar-10b-64k on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.8307
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 600
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0002 | 1 | 2.4169 |
8.7825 | 0.0090 | 50 | 2.1226 |
8.3004 | 0.0181 | 100 | 2.0489 |
8.2362 | 0.0271 | 150 | 1.9942 |
8.1521 | 0.0361 | 200 | 1.9561 |
7.9439 | 0.0451 | 250 | 1.9264 |
7.9633 | 0.0542 | 300 | 1.9012 |
7.848 | 0.0632 | 350 | 1.8796 |
7.9365 | 0.0722 | 400 | 1.8597 |
7.8769 | 0.0813 | 450 | 1.8424 |
8.1112 | 0.0903 | 500 | 1.8346 |
7.7599 | 0.0993 | 550 | 1.8292 |
8.0428 | 0.1083 | 600 | 1.8307 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for oldiday/07842df3-503d-4d79-9f21-35a929ea2e5a
Base model
NousResearch/Yarn-Solar-10b-64k