See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/Yarn-Solar-10b-64k
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 9bd7b6044d104eec_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/9bd7b6044d104eec_train_data.json
type:
field_input: ''
field_instruction: input_text
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: oldiday/7576c91c-10b4-49e2-8393-8055fec170f0
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/9bd7b6044d104eec_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: e5a6e46b-b77f-4d50-a625-e1eb21e1df7c
wandb_project: Gradients-On-Six
wandb_run: your_name
wandb_runid: e5a6e46b-b77f-4d50-a625-e1eb21e1df7c
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
7576c91c-10b4-49e2-8393-8055fec170f0
This model is a fine-tuned version of NousResearch/Yarn-Solar-10b-64k on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0215
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0125 | 1 | 2.0694 |
3.0347 | 0.1121 | 9 | 0.3758 |
0.5592 | 0.2243 | 18 | 0.1338 |
0.4166 | 0.3364 | 27 | 0.0836 |
0.3085 | 0.4486 | 36 | 0.0722 |
0.1686 | 0.5607 | 45 | 0.0535 |
0.1935 | 0.6729 | 54 | 0.0369 |
0.1384 | 0.7850 | 63 | 0.0295 |
0.0998 | 0.8972 | 72 | 0.0225 |
0.1406 | 1.0093 | 81 | 0.0230 |
0.0726 | 1.1215 | 90 | 0.0219 |
0.0303 | 1.2336 | 99 | 0.0215 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 10
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for oldiday/7576c91c-10b4-49e2-8393-8055fec170f0
Base model
NousResearch/Yarn-Solar-10b-64k