oliverdk's picture
End of training
a7ef0da verified
|
raw
history blame
3.12 kB
metadata
license: bsd-3-clause
base_model: Salesforce/codegen-350M-mono
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: codegen-350M-mono-measurement_pred-diamonds-seed1
    results: []

codegen-350M-mono-measurement_pred-diamonds-seed1

This model is a fine-tuned version of Salesforce/codegen-350M-mono on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4083
  • Accuracy: 0.9134
  • Accuracy Sensor 0: 0.9153
  • Auroc Sensor 0: 0.9651
  • Accuracy Sensor 1: 0.9094
  • Auroc Sensor 1: 0.9502
  • Accuracy Sensor 2: 0.9317
  • Auroc Sensor 2: 0.9780
  • Accuracy Aggregated: 0.8974
  • Auroc Aggregated: 0.9672

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 64
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Accuracy Sensor 0 Auroc Sensor 0 Accuracy Sensor 1 Auroc Sensor 1 Accuracy Sensor 2 Auroc Sensor 2 Accuracy Aggregated Auroc Aggregated
0.2812 0.9997 781 0.2931 0.8747 0.8785 0.9058 0.8806 0.9047 0.8897 0.9331 0.8499 0.9009
0.1938 1.9994 1562 0.2940 0.8844 0.8760 0.9330 0.9017 0.9300 0.9160 0.9574 0.8438 0.9252
0.1202 2.9990 2343 0.2551 0.9080 0.9055 0.9601 0.9119 0.9504 0.9235 0.9757 0.8910 0.9615
0.0779 4.0 3125 0.2902 0.9178 0.9194 0.9667 0.9164 0.9516 0.9309 0.9799 0.9044 0.9680
0.035 4.9984 3905 0.4083 0.9134 0.9153 0.9651 0.9094 0.9502 0.9317 0.9780 0.8974 0.9672

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1