File size: 3,123 Bytes
bb24bad
c4e2c04
 
 
 
 
 
 
 
 
bb24bad
 
c4e2c04
 
bb24bad
c4e2c04
bb24bad
c4e2c04
 
323dd04
 
 
 
 
 
 
 
 
 
bb24bad
c4e2c04
bb24bad
c4e2c04
bb24bad
c4e2c04
bb24bad
c4e2c04
bb24bad
c4e2c04
bb24bad
c4e2c04
bb24bad
c4e2c04
bb24bad
c4e2c04
bb24bad
c4e2c04
 
 
 
 
 
 
 
 
 
 
 
bb24bad
c4e2c04
bb24bad
c4e2c04
 
323dd04
 
 
 
 
bb24bad
 
c4e2c04
bb24bad
c4e2c04
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: bsd-3-clause
base_model: Salesforce/codegen-350M-mono
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: codegen-350M-mono-measurement_pred-diamonds-seed3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# codegen-350M-mono-measurement_pred-diamonds-seed3

This model is a fine-tuned version of [Salesforce/codegen-350M-mono](https://huggingface.co/Salesforce/codegen-350M-mono) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3757
- Accuracy: 0.9134
- Accuracy Sensor 0: 0.9235
- Auroc Sensor 0: 0.9559
- Accuracy Sensor 1: 0.8989
- Auroc Sensor 1: 0.9539
- Accuracy Sensor 2: 0.9486
- Auroc Sensor 2: 0.9653
- Accuracy Aggregated: 0.8826
- Auroc Aggregated: 0.9553

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 64
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | Accuracy Sensor 0 | Auroc Sensor 0 | Accuracy Sensor 1 | Auroc Sensor 1 | Accuracy Sensor 2 | Auroc Sensor 2 | Accuracy Aggregated | Auroc Aggregated |
|:-------------:|:------:|:----:|:---------------:|:--------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-------------------:|:----------------:|
| 0.287         | 0.9997 | 781  | 0.4392          | 0.8094   | 0.8151            | 0.8977         | 0.8235            | 0.9036         | 0.8395            | 0.9106         | 0.7594              | 0.8793           |
| 0.2108        | 1.9994 | 1562 | 0.2409          | 0.9058   | 0.9011            | 0.9242         | 0.9062            | 0.9344         | 0.9238            | 0.9424         | 0.8920              | 0.9178           |
| 0.1549        | 2.9990 | 2343 | 0.2347          | 0.9119   | 0.9185            | 0.9519         | 0.8929            | 0.9546         | 0.9481            | 0.9605         | 0.8883              | 0.9476           |
| 0.0887        | 4.0    | 3125 | 0.2867          | 0.9139   | 0.9243            | 0.9558         | 0.9057            | 0.9547         | 0.9473            | 0.9653         | 0.8785              | 0.9543           |
| 0.0444        | 4.9984 | 3905 | 0.3757          | 0.9134   | 0.9235            | 0.9559         | 0.8989            | 0.9539         | 0.9486            | 0.9653         | 0.8826              | 0.9553           |


### Framework versions

- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1