|
--- |
|
license: bsd-3-clause |
|
base_model: Salesforce/codegen-350M-mono |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: codegen-350M-mono-measurement_pred-diamonds-seed4 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# codegen-350M-mono-measurement_pred-diamonds-seed4 |
|
|
|
This model is a fine-tuned version of [Salesforce/codegen-350M-mono](https://huggingface.co/Salesforce/codegen-350M-mono) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3745 |
|
- Accuracy: 0.9126 |
|
- Accuracy Sensor 0: 0.9165 |
|
- Auroc Sensor 0: 0.9601 |
|
- Accuracy Sensor 1: 0.9099 |
|
- Auroc Sensor 1: 0.9647 |
|
- Accuracy Sensor 2: 0.9342 |
|
- Auroc Sensor 2: 0.9771 |
|
- Accuracy Aggregated: 0.8898 |
|
- Auroc Aggregated: 0.9613 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 64 |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Accuracy Sensor 0 | Auroc Sensor 0 | Accuracy Sensor 1 | Auroc Sensor 1 | Accuracy Sensor 2 | Auroc Sensor 2 | Accuracy Aggregated | Auroc Aggregated | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-------------------:|:----------------:| |
|
| 0.2756 | 0.9997 | 781 | 0.3221 | 0.8643 | 0.8659 | 0.9177 | 0.8499 | 0.9112 | 0.9025 | 0.9476 | 0.8388 | 0.9090 | |
|
| 0.1793 | 1.9994 | 1562 | 0.2547 | 0.8960 | 0.9032 | 0.9461 | 0.8847 | 0.9450 | 0.9345 | 0.9710 | 0.8617 | 0.9433 | |
|
| 0.1281 | 2.9990 | 2343 | 0.2960 | 0.8797 | 0.8882 | 0.9563 | 0.8726 | 0.9584 | 0.9133 | 0.9719 | 0.8447 | 0.9553 | |
|
| 0.0685 | 4.0 | 3125 | 0.3088 | 0.9049 | 0.9163 | 0.9597 | 0.9014 | 0.9638 | 0.9259 | 0.9765 | 0.8761 | 0.9609 | |
|
| 0.0342 | 4.9984 | 3905 | 0.3745 | 0.9126 | 0.9165 | 0.9601 | 0.9099 | 0.9647 | 0.9342 | 0.9771 | 0.8898 | 0.9613 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.0 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|