model documentation
#1
by
nazneen
- opened
README.md
CHANGED
@@ -5,9 +5,11 @@ language:
|
|
5 |
- fr
|
6 |
- it
|
7 |
- nl
|
|
|
8 |
tags:
|
9 |
- punctuation prediction
|
10 |
- punctuation
|
|
|
11 |
datasets: wmt/europarl
|
12 |
license: mit
|
13 |
widget:
|
@@ -18,14 +20,103 @@ widget:
|
|
18 |
- text: "Ist das eine Frage Frau Müller"
|
19 |
example_title: "German"
|
20 |
- text: "My name is Clara and I live in Berkeley California"
|
21 |
-
example_title: "English"
|
|
|
22 |
metrics:
|
23 |
- f1
|
24 |
---
|
25 |
|
26 |
-
# Work in progress
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
```
|
30 |
precision recall f1-score support
|
31 |
|
@@ -39,4 +130,94 @@ metrics:
|
|
39 |
accuracy 0.98 54504270
|
40 |
macro avg 0.83 0.75 0.78 54504270
|
41 |
weighted avg 0.98 0.98 0.98 54504270
|
42 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
- fr
|
6 |
- it
|
7 |
- nl
|
8 |
+
|
9 |
tags:
|
10 |
- punctuation prediction
|
11 |
- punctuation
|
12 |
+
|
13 |
datasets: wmt/europarl
|
14 |
license: mit
|
15 |
widget:
|
|
|
20 |
- text: "Ist das eine Frage Frau Müller"
|
21 |
example_title: "German"
|
22 |
- text: "My name is Clara and I live in Berkeley California"
|
23 |
+
example_title: "English"
|
24 |
+
|
25 |
metrics:
|
26 |
- f1
|
27 |
---
|
28 |
|
|
|
29 |
|
30 |
+
# Model Card for fullstop-punctuation-multilingual-base
|
31 |
+
|
32 |
+
# Model Details
|
33 |
+
|
34 |
+
## Model Description
|
35 |
+
|
36 |
+
The goal of this task consists in training NLP models that can predict the end of sentence (EOS) and punctuation marks on automatically generated or transcribed texts.
|
37 |
+
|
38 |
+
- **Developed by:** Oliver Guhr
|
39 |
+
- **Shared by [Optional]:** Oliver Guhr
|
40 |
+
- **Model type:** Token Classification
|
41 |
+
- **Language(s) (NLP):** English, German, French, Italian, Dutch
|
42 |
+
- **License:** MIT
|
43 |
+
- **Parent Model:** xlm-roberta-base
|
44 |
+
- **Resources for more information:**
|
45 |
+
- [GitHub Repo](https://github.com/oliverguhr/fullstop-deep-punctuation-prediction)
|
46 |
+
- [Associated Paper](https://www.researchgate.net/profile/Oliver-Guhr/publication/355038679_FullStop_Multilingual_Deep_Models_for_Punctuation_Prediction/links/615a0ce3a6fae644fbd08724/FullStop-Multilingual-Deep-Models-for-Punctuation-Prediction.pdf)
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
# Uses
|
51 |
+
|
52 |
+
|
53 |
+
## Direct Use
|
54 |
+
This model can be used for the task of Token Classification
|
55 |
+
|
56 |
+
## Downstream Use [Optional]
|
57 |
+
|
58 |
+
More information needed.
|
59 |
+
|
60 |
+
## Out-of-Scope Use
|
61 |
+
|
62 |
+
The model should not be used to intentionally create hostile or alienating environments for people.
|
63 |
+
|
64 |
+
# Bias, Risks, and Limitations
|
65 |
+
|
66 |
+
|
67 |
+
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
## Recommendations
|
72 |
+
|
73 |
+
|
74 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
75 |
+
|
76 |
+
# Training Details
|
77 |
+
|
78 |
+
## Training Data
|
79 |
+
|
80 |
+
The model authors note in the [associated paper](https://www.researchgate.net/profile/Oliver-Guhr/publication/355038679_FullStop_Multilingual_Deep_Models_for_Punctuation_Prediction/links/615a0ce3a6fae644fbd08724/FullStop-Multilingual-Deep-Models-for-Punctuation-Prediction.pdf):
|
81 |
+
> The task consists in predicting EOS and punctua- tion marks on unpunctuated lowercased text. The organizers of the SeppNLG shared task provided 470 MB of English, German, French, and Italian text. This data set consists of a training and a de- velopment set.
|
82 |
+
|
83 |
+
|
84 |
+
## Training Procedure
|
85 |
+
|
86 |
+
|
87 |
+
### Preprocessing
|
88 |
+
|
89 |
+
More information needed
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
### Speeds, Sizes, Times
|
96 |
+
More information needed
|
97 |
+
|
98 |
+
|
99 |
+
# Evaluation
|
100 |
+
|
101 |
+
|
102 |
+
## Testing Data, Factors & Metrics
|
103 |
+
|
104 |
+
### Testing Data
|
105 |
+
|
106 |
+
More information needed
|
107 |
+
|
108 |
+
|
109 |
+
### Factors
|
110 |
+
More information needed
|
111 |
+
|
112 |
+
### Metrics
|
113 |
+
|
114 |
+
More information needed
|
115 |
+
|
116 |
+
|
117 |
+
## Results
|
118 |
+
|
119 |
+
### Classification report over all languages
|
120 |
```
|
121 |
precision recall f1-score support
|
122 |
|
|
|
130 |
accuracy 0.98 54504270
|
131 |
macro avg 0.83 0.75 0.78 54504270
|
132 |
weighted avg 0.98 0.98 0.98 54504270
|
133 |
+
```
|
134 |
+
|
135 |
+
|
136 |
+
|
137 |
+
# Model Examination
|
138 |
+
|
139 |
+
More information needed
|
140 |
+
|
141 |
+
# Environmental Impact
|
142 |
+
|
143 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
144 |
+
|
145 |
+
- **Hardware Type:** More information needed
|
146 |
+
- **Hours used:** More information needed
|
147 |
+
- **Cloud Provider:** More information needed
|
148 |
+
- **Compute Region:** More information needed
|
149 |
+
- **Carbon Emitted:** More information needed
|
150 |
+
|
151 |
+
# Technical Specifications [optional]
|
152 |
+
|
153 |
+
## Model Architecture and Objective
|
154 |
+
|
155 |
+
More information needed
|
156 |
+
|
157 |
+
## Compute Infrastructure
|
158 |
+
|
159 |
+
More information needed
|
160 |
+
|
161 |
+
### Hardware
|
162 |
+
|
163 |
+
|
164 |
+
More information needed
|
165 |
+
|
166 |
+
### Software
|
167 |
+
|
168 |
+
More information needed.
|
169 |
+
|
170 |
+
# Citation
|
171 |
+
|
172 |
+
|
173 |
+
**BibTeX:**
|
174 |
+
|
175 |
+
|
176 |
+
```bibtex
|
177 |
+
@article{guhr-EtAl:2021:fullstop,
|
178 |
+
title={FullStop: Multilingual Deep Models for Punctuation Prediction},
|
179 |
+
author = {Guhr, Oliver and Schumann, Anne-Kathrin and Bahrmann, Frank and Böhme, Hans Joachim},
|
180 |
+
booktitle = {Proceedings of the Swiss Text Analytics Conference 2021},
|
181 |
+
month = {June},
|
182 |
+
year = {2021},
|
183 |
+
address = {Winterthur, Switzerland},
|
184 |
+
publisher = {CEUR Workshop Proceedings},
|
185 |
+
url = {http://ceur-ws.org/Vol-2957/sepp_paper4.pdf}
|
186 |
+
}
|
187 |
+
```
|
188 |
+
|
189 |
+
|
190 |
+
|
191 |
+
|
192 |
+
# Glossary [optional]
|
193 |
+
More information needed
|
194 |
+
|
195 |
+
# More Information [optional]
|
196 |
+
More information needed
|
197 |
+
|
198 |
+
|
199 |
+
# Model Card Authors [optional]
|
200 |
+
|
201 |
+
Oliver Guhr in collaboration with Ezi Ozoani and the Hugging Face team
|
202 |
+
|
203 |
+
|
204 |
+
# Model Card Contact
|
205 |
+
|
206 |
+
More information needed
|
207 |
+
|
208 |
+
# How to Get Started with the Model
|
209 |
+
|
210 |
+
Use the code below to get started with the model.
|
211 |
+
|
212 |
+
<details>
|
213 |
+
<summary> Click to expand </summary>
|
214 |
+
|
215 |
+
```python
|
216 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
217 |
+
|
218 |
+
tokenizer = AutoTokenizer.from_pretrained("oliverguhr/fullstop-punctuation-multilingual-base")
|
219 |
+
|
220 |
+
model = AutoModelForTokenClassification.from_pretrained("oliverguhr/fullstop-punctuation-multilingual-base")
|
221 |
+
```
|
222 |
+
</details>
|
223 |
+
|