|
---
|
|
base_model: FacebookAI/xlm-roberta-large
|
|
library_name: sentence-transformers
|
|
metrics:
|
|
- pearson_cosine
|
|
- spearman_cosine
|
|
- pearson_manhattan
|
|
- spearman_manhattan
|
|
- pearson_euclidean
|
|
- spearman_euclidean
|
|
- pearson_dot
|
|
- spearman_dot
|
|
- pearson_max
|
|
- spearman_max
|
|
pipeline_tag: sentence-similarity
|
|
tags:
|
|
- sentence-transformers
|
|
- sentence-similarity
|
|
- feature-extraction
|
|
- mteb
|
|
- bilingual
|
|
model-index:
|
|
- name: omarelshehy/Arabic-English-Matryoshka-STS
|
|
results:
|
|
- dataset:
|
|
config: en-ar
|
|
name: MTEB STS17 (en-ar)
|
|
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
|
|
split: test
|
|
type: mteb/sts17-crosslingual-sts
|
|
metrics:
|
|
- type: cosine_pearson
|
|
value: 79.79480510851795
|
|
- type: cosine_spearman
|
|
value: 79.67609346073252
|
|
- type: euclidean_pearson
|
|
value: 81.64087935350051
|
|
- type: euclidean_spearman
|
|
value: 80.52588414802709
|
|
- type: main_score
|
|
value: 79.67609346073252
|
|
- type: manhattan_pearson
|
|
value: 81.57042957417305
|
|
- type: manhattan_spearman
|
|
value: 80.44331526051143
|
|
- type: pearson
|
|
value: 79.79480418294698
|
|
- type: spearman
|
|
value: 79.67609346073252
|
|
task:
|
|
type: STS
|
|
- dataset:
|
|
config: ar-ar
|
|
name: MTEB STS17 (ar-ar)
|
|
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
|
|
split: test
|
|
type: mteb/sts17-crosslingual-sts
|
|
metrics:
|
|
- type: cosine_pearson
|
|
value: 82.22889478671283
|
|
- type: cosine_spearman
|
|
value: 83.0533648934447
|
|
- type: euclidean_pearson
|
|
value: 81.15891941165452
|
|
- type: euclidean_spearman
|
|
value: 82.14034597386936
|
|
- type: main_score
|
|
value: 83.0533648934447
|
|
- type: manhattan_pearson
|
|
value: 81.17463976232014
|
|
- type: manhattan_spearman
|
|
value: 82.09804987736345
|
|
- type: pearson
|
|
value: 82.22889389569819
|
|
- type: spearman
|
|
value: 83.0529662284269
|
|
task:
|
|
type: STS
|
|
- dataset:
|
|
config: en-en
|
|
name: MTEB STS17 (en-en)
|
|
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
|
|
split: test
|
|
type: mteb/sts17-crosslingual-sts
|
|
metrics:
|
|
- type: cosine_pearson
|
|
value: 87.17053120821998
|
|
- type: cosine_spearman
|
|
value: 87.05959159411456
|
|
- type: euclidean_pearson
|
|
value: 87.63706739480517
|
|
- type: euclidean_spearman
|
|
value: 87.7675347222274
|
|
- type: main_score
|
|
value: 87.05959159411456
|
|
- type: manhattan_pearson
|
|
value: 87.7006832512623
|
|
- type: manhattan_spearman
|
|
value: 87.80128473941168
|
|
- type: pearson
|
|
value: 87.17053012311975
|
|
- type: spearman
|
|
value: 87.05959159411456
|
|
task:
|
|
type: STS
|
|
Language:
|
|
- ar
|
|
- en
|
|
language:
|
|
- ar
|
|
- en
|
|
---
|
|
|
|
# SentenceTransformer based on FacebookAI/xlm-roberta-large |
|
|
|
This is a Multilingual (Arabic-English) [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
The model can handle both languages separately pretty well but also interchangeably which opens many possibilities for different flexible applications but also for researchers who want to further develop arabic models :) |
|
|
|
The metrics from MTEB are good but don't focus completely on them anyway, test the model first and see if it works for you. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) <!-- at revision c23d21b0620b635a76227c604d44e43a9f0ee389 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 1024 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
|
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("omarelshehy/Arabic-English-Matryoshka-STS") |
|
# Run inference |
|
sentences = [ |
|
'حب سعيد الواضح للأدب والموسيقى الغربية يتصادم باستمرار مع غضبه الصالح لما فعله الغرب للبقية.', |
|
'Said loves Western literature and music but is angry about what the West has done to the rest.', |
|
'سعيد يعتقد أن الغرب لديه أفضل من كل شيء.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 1024] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |