Model Card for Model ID
Model Details
Model Description
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by: [More Information Needed]
- Funded by [optional]: [More Information Needed]
- Shared by [optional]: [More Information Needed]
- Model type: [More Information Needed]
- Language(s) (NLP): [More Information Needed]
- License: [More Information Needed]
- Finetuned from model [optional]: [More Information Needed]
Model Sources [optional]
- Repository: [More Information Needed]
- Paper [optional]: [More Information Needed]
- Demo [optional]: [More Information Needed]
Uses
!pip install -U bitsandbytes
!pip install -U transformers
!pip install -U accelerate
!pip install -U datasets
!pip install -U peft
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
from peft import PeftModel
import torch
from tqdm import tqdm
import json
# 必要なライブラリを読み込み
from peft import PeftModel
import torch
import json
from tqdm import tqdm
import re
## ベースとなるモデルと学習したLoRAのアダプタ
model_id = "llm-jp/llm-jp-3-13b"
adapter_id = "onhrs/ono-llm-jp-3-13b-finetune"
## Hugging Face Token を指定
HF_TOKEN = "..."
# QLoRA config
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
# Load model
model = AutoModelForCausalLM.from_pretrained(
model_id,
quantization_config=bnb_config,
device_map="auto",
token = HF_TOKEN
)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, token = HF_TOKEN)
# 元のモデルにLoRAのアダプタを統合。
model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)
# データセットの読み込み。
# omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
# llmjp
results = []
for data in tqdm(datasets):
input = data["input"]
prompt = f"""### 指示
{input}
### 回答
"""
# トークナイズ処理を修正
inputs = tokenizer(
prompt,
return_tensors="pt",
add_special_tokens=False
).to(model.device)
# generateの呼び出し
with torch.no_grad():
outputs = model.generate(
input_ids=inputs.input_ids, # input_idsを明示的に指定
attention_mask=inputs.attention_mask, # tokenizerから取得したattention_maskを使用
max_new_tokens=100,
do_sample=False,
repetition_penalty=1.2,
pad_token_id=tokenizer.eos_token_id
)[0]
# 出力のデコード
output = tokenizer.decode(outputs[inputs.input_ids.size(1):], skip_special_tokens=True)
# 結果の保存
results.append({
"task_id": data["task_id"],
"input": input,
"output": output
})
#結果の出力
import re
jsonl_id = re.sub(".*/", "", adapter_id)
with open(f"./{jsonl_id}-outputs.jsonl", 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters
f.write('\n')
学習データセット
Language | Dataset | 詳細 |
---|---|---|
Japanese | elyza/ELYZA-tasks-100 | https://huggingface.co/datasets/elyza/ELYZA-tasks-100 |
Japanese | ELYZA-tasks-100からTanuki-8x8Bで合成データ生成 | https://zenn.dev/karaage0703/articles/e79a1db743b8e4 |
Japanese | ichikara-instruction | https://liat-aip.sakura.ne.jp/wp/llmのための日本語インストラクションデータ作成/llmのための日本語インストラクションデータ-公開/ |
Japanese | ichikara-instructionからTanuki-8x8Bで合成データ生成 |
Model tree for onhrs/ono-llm-jp-3-13b-finetune
Base model
llm-jp/llm-jp-3-13b