onhrs commited on
Commit
7a53257
1 Parent(s): 44ee2f8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +134 -163
README.md CHANGED
@@ -1,6 +1,11 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
@@ -35,165 +40,131 @@ This is the model card of a 🤗 transformers model that has been pushed on the
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
+ language:
4
+ - ja
5
+ datasets:
6
+ - elyza/ELYZA-tasks-100
7
+ base_model:
8
+ - llm-jp/llm-jp-3-13b
9
  ---
10
 
11
  # Model Card for Model ID
 
40
 
41
  ## Uses
42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
 
44
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
45
+ ```python
46
+
47
+ !pip install -U bitsandbytes
48
+ !pip install -U transformers
49
+ !pip install -U accelerate
50
+ !pip install -U datasets
51
+ !pip install -U peft
52
+
53
+
54
+ from transformers import (
55
+ AutoModelForCausalLM,
56
+ AutoTokenizer,
57
+ BitsAndBytesConfig,
58
+ )
59
+ from peft import PeftModel
60
+ import torch
61
+ from tqdm import tqdm
62
+ import json
63
+
64
+ # 必要なライブラリを読み込み
65
+ from peft import PeftModel
66
+ import torch
67
+ import json
68
+ from tqdm import tqdm
69
+ import re
70
+
71
+ ## ベースとなるモデルと学習したLoRAのアダプタ
72
+ model_id = "llm-jp/llm-jp-3-13b"
73
+ adapter_id = "onhrs/ono-llm-jp-3-13b-finetune"
74
+
75
+ ## Hugging Face Token を指定
76
+ HF_TOKEN = "..."
77
+
78
+
79
+ # QLoRA config
80
+ bnb_config = BitsAndBytesConfig(
81
+ load_in_4bit=True,
82
+ bnb_4bit_quant_type="nf4",
83
+ bnb_4bit_compute_dtype=torch.bfloat16,
84
+ )
85
+
86
+ # Load model
87
+ model = AutoModelForCausalLM.from_pretrained(
88
+ model_id,
89
+ quantization_config=bnb_config,
90
+ device_map="auto",
91
+ token = HF_TOKEN
92
+ )
93
+
94
+ # Load tokenizer
95
+ tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, token = HF_TOKEN)
96
+
97
+ # 元のモデルにLoRAのアダプタを統合。
98
+ model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)
99
+
100
+
101
+ # データセットの読み込み。
102
+ # omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。
103
+ datasets = []
104
+ with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
105
+ item = ""
106
+ for line in f:
107
+ line = line.strip()
108
+ item += line
109
+ if item.endswith("}"):
110
+ datasets.append(json.loads(item))
111
+ item = ""
112
+
113
+
114
+
115
+
116
+ # llmjp
117
+ results = []
118
+ for data in tqdm(datasets):
119
+ input = data["input"]
120
+
121
+ prompt = f"""### 指示
122
+ {input}
123
+ ### 回答
124
+ """
125
+
126
+ # トークナイズ処理を修正
127
+ inputs = tokenizer(
128
+ prompt,
129
+ return_tensors="pt",
130
+ add_special_tokens=False
131
+ ).to(model.device)
132
+
133
+ # generateの呼び出し
134
+ with torch.no_grad():
135
+ outputs = model.generate(
136
+ input_ids=inputs.input_ids, # input_idsを明示的に指定
137
+ attention_mask=inputs.attention_mask, # tokenizerから取得したattention_maskを使用
138
+ max_new_tokens=100,
139
+ do_sample=False,
140
+ repetition_penalty=1.2,
141
+ pad_token_id=tokenizer.eos_token_id
142
+ )[0]
143
+
144
+ # 出力のデコード
145
+ output = tokenizer.decode(outputs[inputs.input_ids.size(1):], skip_special_tokens=True)
146
+
147
+ # 結果の保存
148
+ results.append({
149
+ "task_id": data["task_id"],
150
+ "input": input,
151
+ "output": output
152
+ })
153
+
154
+ #結果の出力
155
+ import re
156
+ jsonl_id = re.sub(".*/", "", adapter_id)
157
+ with open(f"./{jsonl_id}-outputs.jsonl", 'w', encoding='utf-8') as f:
158
+ for result in results:
159
+ json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters
160
+ f.write('\n')
161
+ ```
162
+
163
+ ### 学習データセット
164
+
165
+ | Language | Dataset | 詳細 |
166
+ | ---- | ---- | ---- |
167
+ | Japanese | elyza/ELYZA-tasks-100 | https://huggingface.co/datasets/elyza/ELYZA-tasks-100 |
168
+ | Japanese | ELYZA-tasks-100からTanuki-8x8Bで合成データ生成 | https://zenn.dev/karaage0703/articles/e79a1db743b8e4 |
169
+ | Japanese | ichikara-instruction | https://liat-aip.sakura.ne.jp/wp/llmのための日本語インストラクションデータ作成/llmのための日本語インストラクションデータ-公開/ |
170
+ | Japanese | ichikara-instructionからTanuki-8x8Bで合成データ生成 | |