Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,11 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
# Model Card for Model ID
|
@@ -35,165 +40,131 @@ This is the model card of a 🤗 transformers model that has been pushed on the
|
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- ja
|
5 |
+
datasets:
|
6 |
+
- elyza/ELYZA-tasks-100
|
7 |
+
base_model:
|
8 |
+
- llm-jp/llm-jp-3-13b
|
9 |
---
|
10 |
|
11 |
# Model Card for Model ID
|
|
|
40 |
|
41 |
## Uses
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
45 |
+
```python
|
46 |
+
|
47 |
+
!pip install -U bitsandbytes
|
48 |
+
!pip install -U transformers
|
49 |
+
!pip install -U accelerate
|
50 |
+
!pip install -U datasets
|
51 |
+
!pip install -U peft
|
52 |
+
|
53 |
+
|
54 |
+
from transformers import (
|
55 |
+
AutoModelForCausalLM,
|
56 |
+
AutoTokenizer,
|
57 |
+
BitsAndBytesConfig,
|
58 |
+
)
|
59 |
+
from peft import PeftModel
|
60 |
+
import torch
|
61 |
+
from tqdm import tqdm
|
62 |
+
import json
|
63 |
+
|
64 |
+
# 必要なライブラリを読み込み
|
65 |
+
from peft import PeftModel
|
66 |
+
import torch
|
67 |
+
import json
|
68 |
+
from tqdm import tqdm
|
69 |
+
import re
|
70 |
+
|
71 |
+
## ベースとなるモデルと学習したLoRAのアダプタ
|
72 |
+
model_id = "llm-jp/llm-jp-3-13b"
|
73 |
+
adapter_id = "onhrs/ono-llm-jp-3-13b-finetune"
|
74 |
+
|
75 |
+
## Hugging Face Token を指定
|
76 |
+
HF_TOKEN = "..."
|
77 |
+
|
78 |
+
|
79 |
+
# QLoRA config
|
80 |
+
bnb_config = BitsAndBytesConfig(
|
81 |
+
load_in_4bit=True,
|
82 |
+
bnb_4bit_quant_type="nf4",
|
83 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
84 |
+
)
|
85 |
+
|
86 |
+
# Load model
|
87 |
+
model = AutoModelForCausalLM.from_pretrained(
|
88 |
+
model_id,
|
89 |
+
quantization_config=bnb_config,
|
90 |
+
device_map="auto",
|
91 |
+
token = HF_TOKEN
|
92 |
+
)
|
93 |
+
|
94 |
+
# Load tokenizer
|
95 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, token = HF_TOKEN)
|
96 |
+
|
97 |
+
# 元のモデルにLoRAのアダプタを統合。
|
98 |
+
model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)
|
99 |
+
|
100 |
+
|
101 |
+
# データセットの読み込み。
|
102 |
+
# omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。
|
103 |
+
datasets = []
|
104 |
+
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
|
105 |
+
item = ""
|
106 |
+
for line in f:
|
107 |
+
line = line.strip()
|
108 |
+
item += line
|
109 |
+
if item.endswith("}"):
|
110 |
+
datasets.append(json.loads(item))
|
111 |
+
item = ""
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
# llmjp
|
117 |
+
results = []
|
118 |
+
for data in tqdm(datasets):
|
119 |
+
input = data["input"]
|
120 |
+
|
121 |
+
prompt = f"""### 指示
|
122 |
+
{input}
|
123 |
+
### 回答
|
124 |
+
"""
|
125 |
+
|
126 |
+
# トークナイズ処理を修正
|
127 |
+
inputs = tokenizer(
|
128 |
+
prompt,
|
129 |
+
return_tensors="pt",
|
130 |
+
add_special_tokens=False
|
131 |
+
).to(model.device)
|
132 |
+
|
133 |
+
# generateの呼び出し
|
134 |
+
with torch.no_grad():
|
135 |
+
outputs = model.generate(
|
136 |
+
input_ids=inputs.input_ids, # input_idsを明示的に指定
|
137 |
+
attention_mask=inputs.attention_mask, # tokenizerから取得したattention_maskを使用
|
138 |
+
max_new_tokens=100,
|
139 |
+
do_sample=False,
|
140 |
+
repetition_penalty=1.2,
|
141 |
+
pad_token_id=tokenizer.eos_token_id
|
142 |
+
)[0]
|
143 |
+
|
144 |
+
# 出力のデコード
|
145 |
+
output = tokenizer.decode(outputs[inputs.input_ids.size(1):], skip_special_tokens=True)
|
146 |
+
|
147 |
+
# 結果の保存
|
148 |
+
results.append({
|
149 |
+
"task_id": data["task_id"],
|
150 |
+
"input": input,
|
151 |
+
"output": output
|
152 |
+
})
|
153 |
+
|
154 |
+
#結果の出力
|
155 |
+
import re
|
156 |
+
jsonl_id = re.sub(".*/", "", adapter_id)
|
157 |
+
with open(f"./{jsonl_id}-outputs.jsonl", 'w', encoding='utf-8') as f:
|
158 |
+
for result in results:
|
159 |
+
json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters
|
160 |
+
f.write('\n')
|
161 |
+
```
|
162 |
+
|
163 |
+
### 学習データセット
|
164 |
+
|
165 |
+
| Language | Dataset | 詳細 |
|
166 |
+
| ---- | ---- | ---- |
|
167 |
+
| Japanese | elyza/ELYZA-tasks-100 | https://huggingface.co/datasets/elyza/ELYZA-tasks-100 |
|
168 |
+
| Japanese | ELYZA-tasks-100からTanuki-8x8Bで合成データ生成 | https://zenn.dev/karaage0703/articles/e79a1db743b8e4 |
|
169 |
+
| Japanese | ichikara-instruction | https://liat-aip.sakura.ne.jp/wp/llmのための日本語インストラクションデータ作成/llmのための日本語インストラクションデータ-公開/ |
|
170 |
+
| Japanese | ichikara-instructionからTanuki-8x8Bで合成データ生成 | |
|