metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: Karma_3Class_RMSprop_1-e5_10Epoch_Beit-base-patch16_fold4
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8454600729631131
Karma_3Class_RMSprop_1-e5_10Epoch_Beit-base-patch16_fold4
This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.4498
- Accuracy: 0.8455
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.3912 | 1.0 | 2468 | 0.3994 | 0.8352 |
0.2659 | 2.0 | 4936 | 0.4164 | 0.8368 |
0.3118 | 3.0 | 7404 | 0.4154 | 0.8414 |
0.1057 | 4.0 | 9872 | 0.5038 | 0.8487 |
0.0342 | 5.0 | 12340 | 0.6968 | 0.8438 |
0.0867 | 6.0 | 14808 | 0.9282 | 0.8464 |
0.2041 | 7.0 | 17276 | 1.2042 | 0.8444 |
0.0234 | 8.0 | 19744 | 1.3538 | 0.8446 |
0.0015 | 9.0 | 22212 | 1.4244 | 0.8468 |
0.0001 | 10.0 | 24680 | 1.4498 | 0.8455 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0
- Datasets 2.14.6
- Tokenizers 0.14.1