Ontocord.AI
commited on
Commit
·
e0103c6
1
Parent(s):
cae5ca5
Create utils.py
Browse files
utils.py
ADDED
@@ -0,0 +1,761 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
coding=utf-8
|
3 |
+
Copyright 2022, Ontocord, LLC
|
4 |
+
Copyright 2018, Antonio Mendoza Hao Tan, Mohit Bansal, Huggingface team :)
|
5 |
+
Adapted From Facebook Inc, Detectron2
|
6 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
you may not use this file except in compliance with the License.
|
8 |
+
You may obtain a copy of the License at
|
9 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
Unless required by applicable law or agreed to in writing, software
|
11 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
See the License for the specific language governing permissions and
|
14 |
+
limitations under the License.import copy
|
15 |
+
"""
|
16 |
+
|
17 |
+
import copy
|
18 |
+
import fnmatch
|
19 |
+
import json
|
20 |
+
import os
|
21 |
+
import pickle as pkl
|
22 |
+
import shutil
|
23 |
+
import sys
|
24 |
+
import tarfile
|
25 |
+
import tempfile
|
26 |
+
from collections import OrderedDict
|
27 |
+
from contextlib import contextmanager
|
28 |
+
from functools import partial
|
29 |
+
from hashlib import sha256
|
30 |
+
from io import BytesIO
|
31 |
+
from pathlib import Path
|
32 |
+
from urllib.parse import urlparse
|
33 |
+
from zipfile import ZipFile, is_zipfile
|
34 |
+
|
35 |
+
import numpy as np
|
36 |
+
from PIL import Image
|
37 |
+
from tqdm.auto import tqdm
|
38 |
+
|
39 |
+
import cv2
|
40 |
+
import requests
|
41 |
+
from filelock import FileLock
|
42 |
+
from yaml import Loader, dump, load
|
43 |
+
from torch.nn.functional import cosine_similarity
|
44 |
+
from numpy import asarray
|
45 |
+
|
46 |
+
try:
|
47 |
+
import torch
|
48 |
+
|
49 |
+
_torch_available = True
|
50 |
+
except ImportError:
|
51 |
+
_torch_available = False
|
52 |
+
|
53 |
+
|
54 |
+
try:
|
55 |
+
from torch.hub import _get_torch_home
|
56 |
+
|
57 |
+
torch_cache_home = _get_torch_home()
|
58 |
+
except ImportError:
|
59 |
+
torch_cache_home = os.path.expanduser(
|
60 |
+
os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch"))
|
61 |
+
)
|
62 |
+
|
63 |
+
import re
|
64 |
+
import numpy as np
|
65 |
+
import torch
|
66 |
+
import torch.distributed as dist
|
67 |
+
import collections
|
68 |
+
import logging
|
69 |
+
import sys, os
|
70 |
+
try:
|
71 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__),
|
72 |
+
os.path.pardir)))
|
73 |
+
except:
|
74 |
+
sys.path.append(os.path.abspath(os.path.join("./",
|
75 |
+
os.path.pardir)))
|
76 |
+
|
77 |
+
in_notebook = 'google.colab' in sys.modules
|
78 |
+
if not in_notebook:
|
79 |
+
try:
|
80 |
+
get_ipython()
|
81 |
+
except:
|
82 |
+
in_notebook = False
|
83 |
+
if in_notebook:
|
84 |
+
from IPython.display import clear_output, Image, display
|
85 |
+
|
86 |
+
import PIL.Image
|
87 |
+
|
88 |
+
import random
|
89 |
+
from PIL import Image
|
90 |
+
import requests
|
91 |
+
from transformers import CLIPProcessor, CLIPModel
|
92 |
+
import torch
|
93 |
+
from torch.nn.functional import cosine_similarity
|
94 |
+
import json
|
95 |
+
import tqdm
|
96 |
+
import numpy
|
97 |
+
|
98 |
+
# for visualizing output
|
99 |
+
def showarray(a, fmt='jpeg'):
|
100 |
+
a = np.uint8(np.clip(a, 0, 255))
|
101 |
+
f = io.BytesIO()
|
102 |
+
PIL.Image.fromarray(a).save(f, fmt)
|
103 |
+
display(Image(data=f.getvalue()))
|
104 |
+
|
105 |
+
|
106 |
+
def decode_image(img, frcnn, image_preprocessor, max_detections=36, annotated_image=False):
|
107 |
+
from .visualizing_image import SingleImageViz
|
108 |
+
from .frcnn_ids import objids, attrids
|
109 |
+
if annotated_image:
|
110 |
+
frcnn_visualizer = SingleImageViz(img, id2obj=objids, id2attr=attrids)
|
111 |
+
|
112 |
+
images, sizes, scales_yx = image_preprocessor(img)
|
113 |
+
|
114 |
+
|
115 |
+
output_dict = frcnn(
|
116 |
+
images,
|
117 |
+
sizes,
|
118 |
+
scales_yx = scales_yx,
|
119 |
+
padding = 'max_detections',
|
120 |
+
max_detections = max_detections,
|
121 |
+
return_tensors = 'pt'
|
122 |
+
)
|
123 |
+
|
124 |
+
if annotated_image:
|
125 |
+
# add boxes and labels to the image
|
126 |
+
frcnn_visualizer.draw_boxes(
|
127 |
+
output_dict.get("boxes"),
|
128 |
+
output_dict.get("obj_ids"),
|
129 |
+
output_dict.get("obj_probs"),
|
130 |
+
output_dict.get("attr_ids"),
|
131 |
+
output_dict.get("attr_probs"),
|
132 |
+
)
|
133 |
+
|
134 |
+
|
135 |
+
a = frcnn_visualizer._get_buffer()
|
136 |
+
a = np.uint8(np.clip(a, 0, 255))
|
137 |
+
output_dict['annotated_image'] = PIL.Image.fromarray(a)
|
138 |
+
|
139 |
+
|
140 |
+
return output_dict
|
141 |
+
|
142 |
+
def get_area(pos):
|
143 |
+
"""
|
144 |
+
Args
|
145 |
+
pos: [B, N, 4]
|
146 |
+
(x1, x2, y1, y2)
|
147 |
+
Return
|
148 |
+
area : [B, N]
|
149 |
+
"""
|
150 |
+
# [B, N]
|
151 |
+
height = pos[:, :, 3] - pos[:, :, 2]
|
152 |
+
width = pos[:, :, 1] - pos[:, :, 0]
|
153 |
+
area = height * width
|
154 |
+
return area
|
155 |
+
|
156 |
+
def get_relative_distance(pos):
|
157 |
+
"""
|
158 |
+
Args
|
159 |
+
pos: [B, N, 4]
|
160 |
+
(x1, x2, y1, y2)
|
161 |
+
Return
|
162 |
+
out : [B, N, N, 4]
|
163 |
+
"""
|
164 |
+
# B, N = pos.size()[:-1]
|
165 |
+
|
166 |
+
# [B, N, N, 4]
|
167 |
+
relative_distance = pos.unsqueeze(1) - pos.unsqueeze(2)
|
168 |
+
|
169 |
+
return relative_distance
|
170 |
+
|
171 |
+
|
172 |
+
class LossMeter(object):
|
173 |
+
def __init__(self, maxlen=100):
|
174 |
+
"""Computes and stores the running average"""
|
175 |
+
self.vals = collections.deque([], maxlen=maxlen)
|
176 |
+
|
177 |
+
def __len__(self):
|
178 |
+
return len(self.vals)
|
179 |
+
|
180 |
+
def update(self, new_val):
|
181 |
+
self.vals.append(new_val)
|
182 |
+
|
183 |
+
@property
|
184 |
+
def val(self):
|
185 |
+
return sum(self.vals) / len(self.vals)
|
186 |
+
|
187 |
+
def __repr__(self):
|
188 |
+
return str(self.val)
|
189 |
+
|
190 |
+
|
191 |
+
def count_parameters(model):
|
192 |
+
return sum(p.numel() for p in model.parameters() if p.requires_grad)
|
193 |
+
|
194 |
+
|
195 |
+
def load_state_dict(state_dict_path, loc='cpu'):
|
196 |
+
state_dict = torch.load(state_dict_path, map_location=loc)
|
197 |
+
# Change Multi GPU to single GPU
|
198 |
+
original_keys = list(state_dict.keys())
|
199 |
+
for key in original_keys:
|
200 |
+
if key.startswith("module."):
|
201 |
+
new_key = key[len("module."):]
|
202 |
+
state_dict[new_key] = state_dict.pop(key)
|
203 |
+
return state_dict
|
204 |
+
|
205 |
+
|
206 |
+
def set_global_logging_level(level=logging.ERROR, prefices=[""]):
|
207 |
+
"""
|
208 |
+
Override logging levels of different modules based on their name as a prefix.
|
209 |
+
It needs to be invoked after the modules have been loaded so that their loggers have been initialized.
|
210 |
+
Args:
|
211 |
+
- level: desired level. e.g. logging.INFO. Optional. Default is logging.ERROR
|
212 |
+
- prefices: list of one or more str prefices to match (e.g. ["transformers", "torch"]). Optional.
|
213 |
+
Default is `[""]` to match all active loggers.
|
214 |
+
The match is a case-sensitive `module_name.startswith(prefix)`
|
215 |
+
"""
|
216 |
+
prefix_re = re.compile(fr'^(?:{ "|".join(prefices) })')
|
217 |
+
for name in logging.root.manager.loggerDict:
|
218 |
+
if re.match(prefix_re, name):
|
219 |
+
logging.getLogger(name).setLevel(level)
|
220 |
+
|
221 |
+
|
222 |
+
def get_iou(anchors, gt_boxes):
|
223 |
+
"""
|
224 |
+
anchors: (N, 4) torch floattensor
|
225 |
+
gt_boxes: (K, 4) torch floattensor
|
226 |
+
overlaps: (N, K) ndarray of overlap between boxes and query_boxes
|
227 |
+
"""
|
228 |
+
N = anchors.size(0)
|
229 |
+
|
230 |
+
if gt_boxes.size() == (4,):
|
231 |
+
gt_boxes = gt_boxes.view(1, 4)
|
232 |
+
K = gt_boxes.size(0)
|
233 |
+
|
234 |
+
gt_boxes_area = (
|
235 |
+
(gt_boxes[:, 2] - gt_boxes[:, 0] + 1) *
|
236 |
+
(gt_boxes[:, 3] - gt_boxes[:, 1] + 1)
|
237 |
+
).view(1, K)
|
238 |
+
|
239 |
+
anchors_area = (
|
240 |
+
(anchors[:, 2] - anchors[:, 0] + 1) *
|
241 |
+
(anchors[:, 3] - anchors[:, 1] + 1)
|
242 |
+
).view(N, 1)
|
243 |
+
|
244 |
+
boxes = anchors.view(N, 1, 4).expand(N, K, 4)
|
245 |
+
query_boxes = gt_boxes.view(1, K, 4).expand(N, K, 4)
|
246 |
+
|
247 |
+
iw = (
|
248 |
+
torch.min(boxes[:, :, 2], query_boxes[:, :, 2])
|
249 |
+
- torch.max(boxes[:, :, 0], query_boxes[:, :, 0])
|
250 |
+
+ 1
|
251 |
+
)
|
252 |
+
iw[iw < 0] = 0
|
253 |
+
|
254 |
+
ih = (
|
255 |
+
torch.min(boxes[:, :, 3], query_boxes[:, :, 3])
|
256 |
+
- torch.max(boxes[:, :, 1], query_boxes[:, :, 1])
|
257 |
+
+ 1
|
258 |
+
)
|
259 |
+
ih[ih < 0] = 0
|
260 |
+
|
261 |
+
ua = anchors_area + gt_boxes_area - (iw * ih)
|
262 |
+
overlaps = iw * ih / ua
|
263 |
+
|
264 |
+
return overlaps
|
265 |
+
|
266 |
+
|
267 |
+
def xywh_to_xyxy(boxes):
|
268 |
+
"""Convert [x y w h] box format to [x1 y1 x2 y2] format."""
|
269 |
+
return np.hstack((boxes[:, 0:2], boxes[:, 0:2] + boxes[:, 2:4] - 1))
|
270 |
+
|
271 |
+
default_cache_path = os.path.join(torch_cache_home, "transformers")
|
272 |
+
|
273 |
+
CLOUDFRONT_DISTRIB_PREFIX = "https://cdn.huggingface.co"
|
274 |
+
S3_BUCKET_PREFIX = "https://s3.amazonaws.com/models.huggingface.co/bert"
|
275 |
+
PATH = "/".join(str(Path(__file__).resolve()).split("/")[:-1])
|
276 |
+
CONFIG = os.path.join(PATH, "config.yaml")
|
277 |
+
ATTRIBUTES = os.path.join(PATH, "attributes.txt")
|
278 |
+
OBJECTS = os.path.join(PATH, "objects.txt")
|
279 |
+
PYTORCH_PRETRAINED_BERT_CACHE = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path)
|
280 |
+
PYTORCH_TRANSFORMERS_CACHE = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE)
|
281 |
+
TRANSFORMERS_CACHE = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE)
|
282 |
+
WEIGHTS_NAME = "pytorch_model.bin"
|
283 |
+
CONFIG_NAME = "config.yaml"
|
284 |
+
|
285 |
+
|
286 |
+
def load_labels(objs=OBJECTS, attrs=ATTRIBUTES):
|
287 |
+
vg_classes = []
|
288 |
+
with open(objs) as f:
|
289 |
+
for object in f.readlines():
|
290 |
+
vg_classes.append(object.split(",")[0].lower().strip())
|
291 |
+
|
292 |
+
vg_attrs = []
|
293 |
+
with open(attrs) as f:
|
294 |
+
for object in f.readlines():
|
295 |
+
vg_attrs.append(object.split(",")[0].lower().strip())
|
296 |
+
return vg_classes, vg_attrs
|
297 |
+
|
298 |
+
|
299 |
+
def load_checkpoint(ckp):
|
300 |
+
r = OrderedDict()
|
301 |
+
with open(ckp, "rb") as f:
|
302 |
+
ckp = pkl.load(f)["model"]
|
303 |
+
for k in copy.deepcopy(list(ckp.keys())):
|
304 |
+
v = ckp.pop(k)
|
305 |
+
if isinstance(v, np.ndarray):
|
306 |
+
v = torch.tensor(v)
|
307 |
+
else:
|
308 |
+
assert isinstance(v, torch.tensor), type(v)
|
309 |
+
r[k] = v
|
310 |
+
return r
|
311 |
+
|
312 |
+
|
313 |
+
class Config:
|
314 |
+
_pointer = {}
|
315 |
+
|
316 |
+
def __init__(self, dictionary: dict, name: str = "root", level=0):
|
317 |
+
self._name = name
|
318 |
+
self._level = level
|
319 |
+
d = {}
|
320 |
+
for k, v in dictionary.items():
|
321 |
+
if v is None:
|
322 |
+
raise ValueError()
|
323 |
+
k = copy.deepcopy(k)
|
324 |
+
v = copy.deepcopy(v)
|
325 |
+
if isinstance(v, dict):
|
326 |
+
v = Config(v, name=k, level=level + 1)
|
327 |
+
d[k] = v
|
328 |
+
setattr(self, k, v)
|
329 |
+
|
330 |
+
self._pointer = d
|
331 |
+
|
332 |
+
def __repr__(self):
|
333 |
+
return str(list((self._pointer.keys())))
|
334 |
+
|
335 |
+
def __setattr__(self, key, val):
|
336 |
+
self.__dict__[key] = val
|
337 |
+
self.__dict__[key.upper()] = val
|
338 |
+
levels = key.split(".")
|
339 |
+
last_level = len(levels) - 1
|
340 |
+
pointer = self._pointer
|
341 |
+
if len(levels) > 1:
|
342 |
+
for i, l in enumerate(levels):
|
343 |
+
if hasattr(self, l) and isinstance(getattr(self, l), Config):
|
344 |
+
setattr(getattr(self, l), ".".join(levels[i:]), val)
|
345 |
+
if l == last_level:
|
346 |
+
pointer[l] = val
|
347 |
+
else:
|
348 |
+
pointer = pointer[l]
|
349 |
+
|
350 |
+
def to_dict(self):
|
351 |
+
return self._pointer
|
352 |
+
|
353 |
+
def dump_yaml(self, data, file_name):
|
354 |
+
with open(f"{file_name}", "w") as stream:
|
355 |
+
dump(data, stream)
|
356 |
+
|
357 |
+
def dump_json(self, data, file_name):
|
358 |
+
with open(f"{file_name}", "w") as stream:
|
359 |
+
json.dump(data, stream)
|
360 |
+
|
361 |
+
@staticmethod
|
362 |
+
def load_yaml(config):
|
363 |
+
with open(config) as stream:
|
364 |
+
data = load(stream, Loader=Loader)
|
365 |
+
return data
|
366 |
+
|
367 |
+
def __str__(self):
|
368 |
+
t = " "
|
369 |
+
if self._name != "root":
|
370 |
+
r = f"{t * (self._level-1)}{self._name}:\n"
|
371 |
+
else:
|
372 |
+
r = ""
|
373 |
+
level = self._level
|
374 |
+
for i, (k, v) in enumerate(self._pointer.items()):
|
375 |
+
if isinstance(v, Config):
|
376 |
+
r += f"{t * (self._level)}{v}\n"
|
377 |
+
self._level += 1
|
378 |
+
else:
|
379 |
+
r += f"{t * (self._level)}{k}: {v} ({type(v).__name__})\n"
|
380 |
+
self._level = level
|
381 |
+
return r[:-1]
|
382 |
+
|
383 |
+
@classmethod
|
384 |
+
def from_pretrained(cls, pretrained_model_name_or_path: str, **kwargs):
|
385 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
386 |
+
return cls(config_dict)
|
387 |
+
|
388 |
+
@classmethod
|
389 |
+
def get_config_dict(cls, pretrained_model_name_or_path: str, **kwargs):
|
390 |
+
|
391 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
392 |
+
force_download = kwargs.pop("force_download", False)
|
393 |
+
resume_download = kwargs.pop("resume_download", False)
|
394 |
+
proxies = kwargs.pop("proxies", None)
|
395 |
+
local_files_only = kwargs.pop("local_files_only", False)
|
396 |
+
|
397 |
+
if os.path.isdir(pretrained_model_name_or_path):
|
398 |
+
config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
|
399 |
+
elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
|
400 |
+
config_file = pretrained_model_name_or_path
|
401 |
+
else:
|
402 |
+
config_file = hf_bucket_url(pretrained_model_name_or_path, filename=CONFIG_NAME, use_cdn=False)
|
403 |
+
|
404 |
+
try:
|
405 |
+
# Load from URL or cache if already cached
|
406 |
+
resolved_config_file = cached_path(
|
407 |
+
config_file,
|
408 |
+
cache_dir=cache_dir,
|
409 |
+
force_download=force_download,
|
410 |
+
proxies=proxies,
|
411 |
+
resume_download=resume_download,
|
412 |
+
local_files_only=local_files_only,
|
413 |
+
)
|
414 |
+
# Load config dict
|
415 |
+
if resolved_config_file is None:
|
416 |
+
raise EnvironmentError
|
417 |
+
|
418 |
+
config_file = Config.load_yaml(resolved_config_file)
|
419 |
+
|
420 |
+
except EnvironmentError:
|
421 |
+
msg = "Can't load config for"
|
422 |
+
raise EnvironmentError(msg)
|
423 |
+
|
424 |
+
if resolved_config_file == config_file:
|
425 |
+
print("loading configuration file from path")
|
426 |
+
else:
|
427 |
+
print("loading configuration file cache")
|
428 |
+
|
429 |
+
return Config.load_yaml(resolved_config_file), kwargs
|
430 |
+
|
431 |
+
|
432 |
+
# quick compare tensors
|
433 |
+
def compare(in_tensor):
|
434 |
+
|
435 |
+
out_tensor = torch.load("dump.pt", map_location=in_tensor.device)
|
436 |
+
n1 = in_tensor.numpy()
|
437 |
+
n2 = out_tensor.numpy()[0]
|
438 |
+
print(n1.shape, n1[0, 0, :5])
|
439 |
+
print(n2.shape, n2[0, 0, :5])
|
440 |
+
assert np.allclose(
|
441 |
+
n1, n2, rtol=0.01, atol=0.1
|
442 |
+
), f"{sum([1 for x in np.isclose(n1, n2, rtol=0.01, atol=0.1).flatten() if x == False])/len(n1.flatten())*100:.4f} % element-wise mismatch"
|
443 |
+
raise Exception("tensors are all good")
|
444 |
+
|
445 |
+
# Hugging face functions below
|
446 |
+
|
447 |
+
|
448 |
+
def is_remote_url(url_or_filename):
|
449 |
+
parsed = urlparse(url_or_filename)
|
450 |
+
return parsed.scheme in ("http", "https")
|
451 |
+
|
452 |
+
|
453 |
+
def hf_bucket_url(model_id: str, filename: str, use_cdn=True) -> str:
|
454 |
+
endpoint = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX
|
455 |
+
legacy_format = "/" not in model_id
|
456 |
+
if legacy_format:
|
457 |
+
return f"{endpoint}/{model_id}-{filename}"
|
458 |
+
else:
|
459 |
+
return f"{endpoint}/{model_id}/{filename}"
|
460 |
+
|
461 |
+
|
462 |
+
def http_get(
|
463 |
+
url,
|
464 |
+
temp_file,
|
465 |
+
proxies=None,
|
466 |
+
resume_size=0,
|
467 |
+
user_agent=None,
|
468 |
+
):
|
469 |
+
ua = "python/{}".format(sys.version.split()[0])
|
470 |
+
if _torch_available:
|
471 |
+
ua += "; torch/{}".format(torch.__version__)
|
472 |
+
if isinstance(user_agent, dict):
|
473 |
+
ua += "; " + "; ".join("{}/{}".format(k, v) for k, v in user_agent.items())
|
474 |
+
elif isinstance(user_agent, str):
|
475 |
+
ua += "; " + user_agent
|
476 |
+
headers = {"user-agent": ua}
|
477 |
+
if resume_size > 0:
|
478 |
+
headers["Range"] = "bytes=%d-" % (resume_size,)
|
479 |
+
response = requests.get(url, stream=True, proxies=proxies, headers=headers)
|
480 |
+
if response.status_code == 416: # Range not satisfiable
|
481 |
+
return
|
482 |
+
content_length = response.headers.get("Content-Length")
|
483 |
+
total = resume_size + int(content_length) if content_length is not None else None
|
484 |
+
progress = tqdm(
|
485 |
+
unit="B",
|
486 |
+
unit_scale=True,
|
487 |
+
total=total,
|
488 |
+
initial=resume_size,
|
489 |
+
desc="Downloading",
|
490 |
+
)
|
491 |
+
for chunk in response.iter_content(chunk_size=1024):
|
492 |
+
if chunk: # filter out keep-alive new chunks
|
493 |
+
progress.update(len(chunk))
|
494 |
+
temp_file.write(chunk)
|
495 |
+
progress.close()
|
496 |
+
|
497 |
+
|
498 |
+
def get_from_cache(
|
499 |
+
url,
|
500 |
+
cache_dir=None,
|
501 |
+
force_download=False,
|
502 |
+
proxies=None,
|
503 |
+
etag_timeout=10,
|
504 |
+
resume_download=False,
|
505 |
+
user_agent=None,
|
506 |
+
local_files_only=False,
|
507 |
+
):
|
508 |
+
|
509 |
+
if cache_dir is None:
|
510 |
+
cache_dir = TRANSFORMERS_CACHE
|
511 |
+
if isinstance(cache_dir, Path):
|
512 |
+
cache_dir = str(cache_dir)
|
513 |
+
|
514 |
+
os.makedirs(cache_dir, exist_ok=True)
|
515 |
+
|
516 |
+
etag = None
|
517 |
+
if not local_files_only:
|
518 |
+
try:
|
519 |
+
response = requests.head(url, allow_redirects=True, proxies=proxies, timeout=etag_timeout)
|
520 |
+
if response.status_code == 200:
|
521 |
+
etag = response.headers.get("ETag")
|
522 |
+
except (EnvironmentError, requests.exceptions.Timeout):
|
523 |
+
# etag is already None
|
524 |
+
pass
|
525 |
+
|
526 |
+
filename = url_to_filename(url, etag)
|
527 |
+
|
528 |
+
# get cache path to put the file
|
529 |
+
cache_path = os.path.join(cache_dir, filename)
|
530 |
+
|
531 |
+
# etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible.
|
532 |
+
# try to get the last downloaded one
|
533 |
+
if etag is None:
|
534 |
+
if os.path.exists(cache_path):
|
535 |
+
return cache_path
|
536 |
+
else:
|
537 |
+
matching_files = [
|
538 |
+
file
|
539 |
+
for file in fnmatch.filter(os.listdir(cache_dir), filename + ".*")
|
540 |
+
if not file.endswith(".json") and not file.endswith(".lock")
|
541 |
+
]
|
542 |
+
if len(matching_files) > 0:
|
543 |
+
return os.path.join(cache_dir, matching_files[-1])
|
544 |
+
else:
|
545 |
+
# If files cannot be found and local_files_only=True,
|
546 |
+
# the models might've been found if local_files_only=False
|
547 |
+
# Notify the user about that
|
548 |
+
if local_files_only:
|
549 |
+
raise ValueError(
|
550 |
+
"Cannot find the requested files in the cached path and outgoing traffic has been"
|
551 |
+
" disabled. To enable model look-ups and downloads online, set 'local_files_only'"
|
552 |
+
" to False."
|
553 |
+
)
|
554 |
+
return None
|
555 |
+
|
556 |
+
# From now on, etag is not None.
|
557 |
+
if os.path.exists(cache_path) and not force_download:
|
558 |
+
return cache_path
|
559 |
+
|
560 |
+
# Prevent parallel downloads of the same file with a lock.
|
561 |
+
lock_path = cache_path + ".lock"
|
562 |
+
with FileLock(lock_path):
|
563 |
+
|
564 |
+
# If the download just completed while the lock was activated.
|
565 |
+
if os.path.exists(cache_path) and not force_download:
|
566 |
+
# Even if returning early like here, the lock will be released.
|
567 |
+
return cache_path
|
568 |
+
|
569 |
+
if resume_download:
|
570 |
+
incomplete_path = cache_path + ".incomplete"
|
571 |
+
|
572 |
+
@contextmanager
|
573 |
+
def _resumable_file_manager():
|
574 |
+
with open(incomplete_path, "a+b") as f:
|
575 |
+
yield f
|
576 |
+
|
577 |
+
temp_file_manager = _resumable_file_manager
|
578 |
+
if os.path.exists(incomplete_path):
|
579 |
+
resume_size = os.stat(incomplete_path).st_size
|
580 |
+
else:
|
581 |
+
resume_size = 0
|
582 |
+
else:
|
583 |
+
temp_file_manager = partial(tempfile.NamedTemporaryFile, dir=cache_dir, delete=False)
|
584 |
+
resume_size = 0
|
585 |
+
|
586 |
+
# Download to temporary file, then copy to cache dir once finished.
|
587 |
+
# Otherwise you get corrupt cache entries if the download gets interrupted.
|
588 |
+
with temp_file_manager() as temp_file:
|
589 |
+
print(
|
590 |
+
"%s not found in cache or force_download set to True, downloading to %s",
|
591 |
+
url,
|
592 |
+
temp_file.name,
|
593 |
+
)
|
594 |
+
|
595 |
+
http_get(
|
596 |
+
url,
|
597 |
+
temp_file,
|
598 |
+
proxies=proxies,
|
599 |
+
resume_size=resume_size,
|
600 |
+
user_agent=user_agent,
|
601 |
+
)
|
602 |
+
|
603 |
+
os.replace(temp_file.name, cache_path)
|
604 |
+
|
605 |
+
meta = {"url": url, "etag": etag}
|
606 |
+
meta_path = cache_path + ".json"
|
607 |
+
with open(meta_path, "w") as meta_file:
|
608 |
+
json.dump(meta, meta_file)
|
609 |
+
|
610 |
+
return cache_path
|
611 |
+
|
612 |
+
|
613 |
+
def url_to_filename(url, etag=None):
|
614 |
+
|
615 |
+
url_bytes = url.encode("utf-8")
|
616 |
+
url_hash = sha256(url_bytes)
|
617 |
+
filename = url_hash.hexdigest()
|
618 |
+
|
619 |
+
if etag:
|
620 |
+
etag_bytes = etag.encode("utf-8")
|
621 |
+
etag_hash = sha256(etag_bytes)
|
622 |
+
filename += "." + etag_hash.hexdigest()
|
623 |
+
|
624 |
+
if url.endswith(".h5"):
|
625 |
+
filename += ".h5"
|
626 |
+
|
627 |
+
return filename
|
628 |
+
|
629 |
+
|
630 |
+
def cached_path(
|
631 |
+
url_or_filename,
|
632 |
+
cache_dir=None,
|
633 |
+
force_download=False,
|
634 |
+
proxies=None,
|
635 |
+
resume_download=False,
|
636 |
+
user_agent=None,
|
637 |
+
extract_compressed_file=False,
|
638 |
+
force_extract=False,
|
639 |
+
local_files_only=False,
|
640 |
+
):
|
641 |
+
if cache_dir is None:
|
642 |
+
cache_dir = TRANSFORMERS_CACHE
|
643 |
+
if isinstance(url_or_filename, Path):
|
644 |
+
url_or_filename = str(url_or_filename)
|
645 |
+
if isinstance(cache_dir, Path):
|
646 |
+
cache_dir = str(cache_dir)
|
647 |
+
|
648 |
+
if is_remote_url(url_or_filename):
|
649 |
+
# URL, so get it from the cache (downloading if necessary)
|
650 |
+
output_path = get_from_cache(
|
651 |
+
url_or_filename,
|
652 |
+
cache_dir=cache_dir,
|
653 |
+
force_download=force_download,
|
654 |
+
proxies=proxies,
|
655 |
+
resume_download=resume_download,
|
656 |
+
user_agent=user_agent,
|
657 |
+
local_files_only=local_files_only,
|
658 |
+
)
|
659 |
+
elif os.path.exists(url_or_filename):
|
660 |
+
# File, and it exists.
|
661 |
+
output_path = url_or_filename
|
662 |
+
elif urlparse(url_or_filename).scheme == "":
|
663 |
+
# File, but it doesn't exist.
|
664 |
+
raise EnvironmentError("file {} not found".format(url_or_filename))
|
665 |
+
else:
|
666 |
+
# Something unknown
|
667 |
+
raise ValueError("unable to parse {} as a URL or as a local path".format(url_or_filename))
|
668 |
+
|
669 |
+
if extract_compressed_file:
|
670 |
+
if not is_zipfile(output_path) and not tarfile.is_tarfile(output_path):
|
671 |
+
return output_path
|
672 |
+
|
673 |
+
# Path where we extract compressed archives
|
674 |
+
# We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/"
|
675 |
+
output_dir, output_file = os.path.split(output_path)
|
676 |
+
output_extract_dir_name = output_file.replace(".", "-") + "-extracted"
|
677 |
+
output_path_extracted = os.path.join(output_dir, output_extract_dir_name)
|
678 |
+
|
679 |
+
if os.path.isdir(output_path_extracted) and os.listdir(output_path_extracted) and not force_extract:
|
680 |
+
return output_path_extracted
|
681 |
+
|
682 |
+
# Prevent parallel extractions
|
683 |
+
lock_path = output_path + ".lock"
|
684 |
+
with FileLock(lock_path):
|
685 |
+
shutil.rmtree(output_path_extracted, ignore_errors=True)
|
686 |
+
os.makedirs(output_path_extracted)
|
687 |
+
if is_zipfile(output_path):
|
688 |
+
with ZipFile(output_path, "r") as zip_file:
|
689 |
+
zip_file.extractall(output_path_extracted)
|
690 |
+
zip_file.close()
|
691 |
+
elif tarfile.is_tarfile(output_path):
|
692 |
+
tar_file = tarfile.open(output_path)
|
693 |
+
tar_file.extractall(output_path_extracted)
|
694 |
+
tar_file.close()
|
695 |
+
else:
|
696 |
+
raise EnvironmentError("Archive format of {} could not be identified".format(output_path))
|
697 |
+
|
698 |
+
return output_path_extracted
|
699 |
+
|
700 |
+
return output_path
|
701 |
+
|
702 |
+
|
703 |
+
def get_data(query, delim=","):
|
704 |
+
assert isinstance(query, str)
|
705 |
+
if os.path.isfile(query):
|
706 |
+
with open(query) as f:
|
707 |
+
data = eval(f.read())
|
708 |
+
else:
|
709 |
+
req = requests.get(query)
|
710 |
+
try:
|
711 |
+
data = requests.json()
|
712 |
+
except Exception:
|
713 |
+
data = req.content.decode()
|
714 |
+
assert data is not None, "could not connect"
|
715 |
+
try:
|
716 |
+
data = eval(data)
|
717 |
+
except Exception:
|
718 |
+
data = data.split("\n")
|
719 |
+
req.close()
|
720 |
+
return data
|
721 |
+
|
722 |
+
|
723 |
+
def get_image_from_url(url):
|
724 |
+
response = requests.get(url)
|
725 |
+
img = np.array(Image.open(BytesIO(response.content)))
|
726 |
+
return img
|
727 |
+
|
728 |
+
|
729 |
+
# to load legacy frcnn checkpoint from detectron
|
730 |
+
def load_frcnn_pkl_from_url(url):
|
731 |
+
import wget
|
732 |
+
fn = url.split("/")[-1]
|
733 |
+
if fn not in os.listdir(os.getcwd()):
|
734 |
+
wget.download(url)
|
735 |
+
with open(fn, "rb") as stream:
|
736 |
+
weights = pkl.load(stream)
|
737 |
+
model = weights.pop("model")
|
738 |
+
new = {}
|
739 |
+
for k, v in model.items():
|
740 |
+
new[k] = torch.from_numpy(v)
|
741 |
+
if "running_var" in k:
|
742 |
+
zero = torch.tensor([0])
|
743 |
+
k2 = k.replace("running_var", "num_batches_tracked")
|
744 |
+
new[k2] = zero
|
745 |
+
return new
|
746 |
+
|
747 |
+
def img_tensorize(im, input_format="RGB"):
|
748 |
+
assert isinstance(im, str)
|
749 |
+
if os.path.isfile(im):
|
750 |
+
img = cv2.imread(im)
|
751 |
+
else:
|
752 |
+
img = get_image_from_url(im)
|
753 |
+
assert img is not None, f"could not connect to: {im}"
|
754 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
755 |
+
if input_format == "RGB":
|
756 |
+
img = img[:, :, ::-1]
|
757 |
+
return img
|
758 |
+
|
759 |
+
|
760 |
+
def chunk(images, batch=1):
|
761 |
+
return (images[i : i + batch] for i in range(0, len(images), batch))
|