Text Generation
Transformers
Safetensors
English
omnilmm
conversational
Inference Endpoints
RLAIF-V-12B / README.md
Yirany's picture
Update README.md
a006514 verified
---
license: apache-2.0
datasets:
- openbmb/RLAIF-V-Dataset
language:
- en
paper:
---
# Model Card for RLAIF-V
[GitHub ](https://github.com/RLHF-V/RLAIF-V) | [Paper](https://arxiv.org/abs/2405.17220)
**RLAIF-V-12B** is a multimodal large language model (MLLM) that exhibits **super GPT-4V trustworthiness**. The model is built up on OmniLMM from the [MiniCPM-V](https://github.com/OpenBMB/MiniCPM-V) series.
We utilize a novel framework, [RLAIF-V](https://github.com/RLHF-V/RLAIF-V), which **aligns MLLMs in a fully open-source paradigm**. This framework maximally exploits the [open-source feedback](https://huggingface.co/datasets/HaoyeZhang/RLAIF-V-Dataset) from two key perspectives, including **high-quality feedback data** and an **online feedback learning algorithm**.
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/6566e0c493e30c8a60048eb3/T4hALrgNdXKHnkvb-27bA.png" alt="fig1" width="85%"/>
</p>
## Model Details
### Key Features
* πŸ… **Super GPT-4V Trustworthiness**: By learning from open-source AI feedback, RLAIF-V-12B achieves super GPT-4V trustworthiness in both generative and discriminative tasks.
* πŸ’ͺ **Maintaining Well Performance on General Abilities**: On benchmarks tested with the general abilities (e.g. LLaVA Bench, MMStar), RLAIF-V-12B also exhibits good performance.
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/6566e0c493e30c8a60048eb3/ypXZxb4HE-jDPJU9115bi.png" alt="fig1" width="90%"/>
</p>
<!-- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6566e0c493e30c8a60048eb3/ypXZxb4HE-jDPJU9115bi.png) -->
### Examples
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/6566e0c493e30c8a60048eb3/yg-Ksp9qi8AodURSmX769.png" alt="fig2-1" width="81%"/>
<img src="https://cdn-uploads.huggingface.co/production/uploads/6566e0c493e30c8a60048eb3/NSEkeBmH99B44rX8GTZig.png" alt="fig2-1" width="80%"/>
</p>
### Model Description
- **Related model:** [OmniLMM-12B](https://huggingface.co/openbmb/OmniLMM-12B)
- **Trained on data:** [RLAIF-V-Dataset](https://huggingface.co/datasets/HaoyeZhang/RLAIF-V-Dataset)
## Usage
Please look at [GitHub](https://github.com/RLHF-V/RLAIF-V) for more details about usage.
## Citation
If you find our model/code/paper helpful, please consider cite our papers πŸ“:
```bibtex
@article{yu2023rlhf,
title={Rlhf-v: Towards trustworthy mllms via behavior alignment from fine-grained correctional human feedback},
author={Yu, Tianyu and Yao, Yuan and Zhang, Haoye and He, Taiwen and Han, Yifeng and Cui, Ganqu and Hu, Jinyi and Liu, Zhiyuan and Zheng, Hai-Tao and Sun, Maosong and others},
journal={arXiv preprint arXiv:2312.00849},
year={2023}
}
@article{yu2024rlaifv,
title={RLAIF-V: Aligning MLLMs through Open-Source AI Feedback for Super GPT-4V Trustworthiness},
author={Yu, Tianyu and Zhang, Haoye and Yao, Yuan and Dang, Yunkai and Chen, Da and Lu, Xiaoman and Cui, Ganqu and He, Taiwen and Liu, Zhiyuan and Chua, Tat-Seng and Sun, Maosong},
journal={arXiv preprint arXiv:2405.17220},
year={2024},
}
```