SLLHF

community
Activity Feed

AI & ML interests

None defined yet.

Recent Activity

danieldk 
posted an update 16 days ago
m-ric 
posted an update 21 days ago
view post
Post
496
Tokenization is one of the most important processes in AI - yet many would like to kill it 💀

What's tokenization? The neural networks inside LLMs actually only process numbers, not text: tokenization is the process that makes text readable for them, by converting sentences into lists of numbers.

➡️ For instance, "This is tokenization" would be split into "This | is | token | ization", then each of the parts (tokens) are converted to IDs according to a predefined mapping: for instance "ization" could map to id 2438.
Thus "This is tokenization" can become 1335 | 135 | 2980 | 2438 => now the model can process the sentence!

Most tokenizers today use pre-specified mappings called "vocabularies", generally built about the compression algorithme Byte-Pair Encoding (BPE) that learns from a big corpuses of texts an optimized split to efficiently encode any text from the same distribution into a list token IDs.

🤨 Now, these current tokenizers have flaws.
For instance, the rigidity of their mapping creates losses ; the prime example being that a tokenizer designed for English (thus optimized for tokens like "has", "been", "clock", etc) will not have the right tokens to approach Burmese, thus being terribly inefficient at it.

Many alternative approaches have emerged as a result: for instance "tokenizer-free tokenizers". One that I really liked was "entropy-based": it monitors the stream of text, and trigger a split whenever the entropy increases too much, i.e. when something "surprising" happens.

But this great article argues that tokenizers are a lesser evil. Read and decide for yourself!
https://huggingface.co/blog/catherinearnett/in-defense-of-tokenizers
m-ric 
posted an update 27 days ago
view post
Post
4796
STOP EVERYTHING NOW - we might finally have a radical architecture improvement over Transformers!!! 🚨

A lone scientist just proposed Tiny Recursive Model (TRM), and it is literally the most impressive model that I've seen this year.

➡️ Tiny Recursive Model is 7M parameters
➡️ On ARC-AGI, it beats flagship models like Gemini-2.5-pro

Consider how wild this is: Gemini-2.5-pro must be over 10,000x bigger
and had 1,000 as many authors 😂 (Alexia is alone on the paper)

What's this sorcery?
In short: it's a very tiny Transformers, but it loops over itself at two different frequencies, updating two latent variables: one for the proposed answer and one for the reasoning.

@AlexiaJM started from the paper Hierarchical Reasoning Model, published a few months ago, that already showed breakthrough improvement on AGI for its small size (27M)

Hierarchical Reasoning Model had introduced one main feature:
🔎 Deep supervision
In their model, one part (here one layer) would run at high frequency, and another would be lower frequency, running only every n steps.

They had used a recurrent architecture, where these layers would repeat many times ; but to make it work they had to do many approximations, including not fully backpropagating the loss through all layers.

Alexia studied what was useful and what wasn't, and cleaned the architecture as follows :
Why use a recurrent architecture, when you can just make it a loop?
➡️ She made the network recursive, looping over itself

Why use 2 latent variables ?
➡️ She provides a crystal clear explanation : the one that changes frequently is the reasoning, the one that changes at low frequency is the proposed answer.
➡️ She runs ablation studies to validate that 2 is indeed optimal.

This new setup is a much more elegant way to process reasoning than generating huge chains of tokens as all flagship models currently do.

This might be the breakthrough we've been awaiting for so long!
  • 2 replies
·
lysandre 
posted an update about 2 months ago
view post
Post
6373
We're kick-starting the process of Transformers v5, with @ArthurZ and @cyrilvallez !

v5 should be significant: we're using it as a milestone for performance optimizations, saner defaults, and a much cleaner code base worthy of 2025.

Fun fact: v4.0.0-rc-1 came out on Nov 19, 2020, nearly five years ago!
  • 6 replies
·
eliebak 
posted an update 2 months ago
view post
Post
3517
Super excited to announce that our research team at Hugging Face will be doing an AMA on reddit r/LocalLLaMA.

Come ask any questions to the team behind SmolLM, FineWeb and more! And who knows, maybe there’ll be a shiny new release to talk about?

Thursday 4th September, 8AM-11AM PST 🤗

science
eliebak 
posted an update 2 months ago
view post
Post
650
Motif 2.6B tech report is pretty insane, first time i see a model with differential attention and polynorm trained at scale!

> It's trained on 2.5T of token, with a "data mixture schedule" to continuously adjust the mixture over training.
> They use WSD with a "Simple moving average" averaging the last 6 ckpt every 8B token.
> They trained on Finemath, Fineweb2, DCLM, TxT360.
> Lot of details in the finetuning data they used, for instance they used EvolKit and did some "dataset fusion" to have more compressed knowledge into the data.
> They mention they also tried Normalized GPT, QK-Norm and Cross Layer Attention.

Motif-Technologies/Motif-2.6B
Xenova 
posted an update 2 months ago
view post
Post
8761
Okay this is insane... WebGPU-accelerated semantic video tracking, powered by DINOv3 and Transformers.js! 🤯
Demo (+ source code): webml-community/DINOv3-video-tracking

This will revolutionize AI-powered video editors... which can now run 100% locally in your browser, no server inference required (costs $0)! 😍

How does it work? 🤔
1️⃣ Generate and cache image features for each frame
2️⃣ Create a list of embeddings for selected patch(es)
3️⃣ Compute cosine similarity between each patch and the selected patch(es)
4️⃣ Highlight those whose score is above some threshold

... et voilà! 🥳

You can also make selections across frames to improve temporal consistency! This is super useful if the object changes its appearance slightly throughout the video.

Excited to see what the community builds with it!
  • 1 reply
·
Xenova 
posted an update 3 months ago
view post
Post
4381
The next generation of AI-powered websites is going to be WILD! 🤯

In-browser tool calling & MCP is finally here, allowing LLMs to interact with websites programmatically.

To show what's possible, I built a demo using Liquid AI's new LFM2 model, powered by 🤗 Transformers.js: LiquidAI/LFM2-WebGPU

As always, the demo is open source (which you can find under the "Files" tab), so I'm excited to see how the community builds upon this! 🚀
  • 2 replies
·