distilbert-base-turkish-case trained on AllNLI Turkish translate triplets
This is a sentence-transformers model finetuned from dbmdz/distilbert-base-turkish-cased. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: dbmdz/distilbert-base-turkish-cased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Language: tr
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("orhanxakarsu/sentence-distilbert-turkish")
# Run inference
sentences = [
"İki kadın, Çin'deki bir markette bir ürüne bakıyor.",
'Alışveriş yapan iki kadın',
'Kadınlar bir spor salonunda çalışıyorlar.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
all-nli-turkish-dev
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9802 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 814,596 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 3 tokens
- mean: 18.16 tokens
- max: 91 tokens
- min: 4 tokens
- mean: 10.54 tokens
- max: 136 tokens
- min: 4 tokens
- mean: 10.73 tokens
- max: 29 tokens
- Samples:
anchor positive negative Beyaz gömlekli ve güneş gözlüklü bir kadın, kucağında bir bebekle dışarıda bir sandalyede oturuyor.
Bebek yerden yukarıda oturuyor
Adam bir top atıyor
Mavi yakalı gömlek giyen ve kazaklı bir adam ve beyaz gömlek giyen hasır şapka takan bir kadın.
Yan yana bir erkek ve bir kadın var.
Evli bir çift akşam yemeği yiyor.
Adam içeride.
Siyah fötr şapkalı bir adam bir arenada boğaya biniyor.
Yeşil üniforma giyen beş subayla birlikte taş bir binanın önünde cep telefonuyla konuşan bir papaz; ikisi ayakta, diğerleri oturuyor.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 8,229 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 4 tokens
- mean: 17.91 tokens
- max: 80 tokens
- min: 4 tokens
- mean: 10.62 tokens
- max: 35 tokens
- min: 4 tokens
- mean: 11.01 tokens
- max: 33 tokens
- Samples:
anchor positive negative Patlamanın büyüklüğünün güçlü bir örneği, Haragosha Tapınağı'nda bulunur, burada tapınağın kemerinin üst crosebar'ını görebilirsiniz, geri kalanı sertleşmiş lav tarafından batırılmıştır.
Patlamanın büyüklüğünün sonucu Haragosha Tapınağı'nda görülüyor.
Haragosha Tapınağı bu güne kadar tamamen sağlamdır.
Arkeolojik kazı yapan iki kişi.
Kazı yapan insanlar var.
Kimse kazmıyor.
İşçiler, Martins'in ünlü Louisiana sosis satıcısı çadırının önünde sıraya giren müşterilere hizmet veriyor
Müşteriler bir satıcı çadırının önünde sıraya giriyor.
Pamuk şeker yiyen bir grup insan var.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64learning_rate
: 2e-05num_train_epochs
: 10warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | all-nli-turkish-dev_cosine_accuracy |
---|---|---|---|---|
0 | 0 | - | - | 0.5808 |
0.0786 | 1000 | 3.5327 | 1.9481 | 0.7607 |
0.1571 | 2000 | 1.5833 | 1.2787 | 0.8260 |
0.2357 | 3000 | 1.2338 | 1.0960 | 0.8533 |
0.3142 | 4000 | 1.1031 | 0.9897 | 0.8695 |
0.3928 | 5000 | 0.998 | 0.9077 | 0.8793 |
0.4714 | 6000 | 0.9412 | 0.8434 | 0.8914 |
0.5499 | 7000 | 0.8703 | 0.7904 | 0.8982 |
0.6285 | 8000 | 0.8094 | 0.7311 | 0.9068 |
0.7070 | 9000 | 0.7653 | 0.6894 | 0.9086 |
0.7856 | 10000 | 0.7248 | 0.6509 | 0.9162 |
0.8642 | 11000 | 0.673 | 0.6145 | 0.9205 |
0.9427 | 12000 | 0.6514 | 0.5762 | 0.9273 |
1.0213 | 13000 | 0.6259 | 0.5463 | 0.9334 |
1.0999 | 14000 | 0.5874 | 0.5276 | 0.9332 |
1.1784 | 15000 | 0.5518 | 0.5053 | 0.9366 |
1.2570 | 16000 | 0.5277 | 0.4783 | 0.9391 |
1.3355 | 17000 | 0.5075 | 0.4571 | 0.9419 |
1.4141 | 18000 | 0.4906 | 0.4379 | 0.9454 |
1.4927 | 19000 | 0.475 | 0.4234 | 0.9465 |
1.5712 | 20000 | 0.447 | 0.4046 | 0.9499 |
1.6498 | 21000 | 0.4307 | 0.3908 | 0.9508 |
1.7283 | 22000 | 0.4126 | 0.3773 | 0.9548 |
1.8069 | 23000 | 0.3985 | 0.3654 | 0.9564 |
1.8855 | 24000 | 0.3748 | 0.3582 | 0.9560 |
1.9640 | 25000 | 0.3675 | 0.3449 | 0.9581 |
2.0426 | 26000 | 0.3545 | 0.3390 | 0.9586 |
2.1211 | 27000 | 0.3456 | 0.3335 | 0.9595 |
2.1997 | 28000 | 0.3295 | 0.3255 | 0.9626 |
2.2783 | 29000 | 0.3198 | 0.3146 | 0.9624 |
2.3568 | 30000 | 0.3107 | 0.3101 | 0.9642 |
2.4354 | 31000 | 0.3139 | 0.3014 | 0.9665 |
2.5139 | 32000 | 0.2982 | 0.3005 | 0.9659 |
2.5925 | 33000 | 0.2903 | 0.2891 | 0.9663 |
2.6711 | 34000 | 0.2778 | 0.2859 | 0.9662 |
2.7496 | 35000 | 0.2731 | 0.2812 | 0.9667 |
2.8282 | 36000 | 0.2613 | 0.2757 | 0.9677 |
2.9067 | 37000 | 0.2566 | 0.2680 | 0.9689 |
2.9853 | 38000 | 0.2488 | 0.2674 | 0.9699 |
3.0639 | 39000 | 0.2434 | 0.2594 | 0.9694 |
3.1424 | 40000 | 0.2375 | 0.2574 | 0.9705 |
3.2210 | 41000 | 0.2295 | 0.2553 | 0.9706 |
3.2996 | 42000 | 0.223 | 0.2501 | 0.9703 |
3.3781 | 43000 | 0.2209 | 0.2455 | 0.9719 |
3.4567 | 44000 | 0.2211 | 0.2409 | 0.9711 |
3.5352 | 45000 | 0.2097 | 0.2396 | 0.9728 |
3.6138 | 46000 | 0.2068 | 0.2345 | 0.9734 |
3.6924 | 47000 | 0.1994 | 0.2298 | 0.9731 |
3.7709 | 48000 | 0.1986 | 0.2299 | 0.9730 |
3.8495 | 49000 | 0.1878 | 0.2271 | 0.9728 |
3.9280 | 50000 | 0.1872 | 0.2244 | 0.9739 |
4.0066 | 51000 | 0.1821 | 0.2249 | 0.9734 |
4.0852 | 52000 | 0.1823 | 0.2188 | 0.9739 |
4.1637 | 53000 | 0.1736 | 0.2176 | 0.9748 |
4.2423 | 54000 | 0.1691 | 0.2152 | 0.9745 |
4.3208 | 55000 | 0.1665 | 0.2148 | 0.9753 |
4.3994 | 56000 | 0.1663 | 0.2133 | 0.9748 |
4.4780 | 57000 | 0.1666 | 0.2123 | 0.9755 |
4.5565 | 58000 | 0.1589 | 0.2082 | 0.9758 |
4.6351 | 59000 | 0.155 | 0.2053 | 0.9762 |
4.7136 | 60000 | 0.155 | 0.2037 | 0.9762 |
4.7922 | 61000 | 0.1536 | 0.2031 | 0.9764 |
4.8708 | 62000 | 0.1443 | 0.2020 | 0.9759 |
4.9493 | 63000 | 0.146 | 0.1999 | 0.9752 |
5.0279 | 64000 | 0.1417 | 0.1969 | 0.9764 |
5.1064 | 65000 | 0.1407 | 0.1966 | 0.9761 |
5.1850 | 66000 | 0.1342 | 0.1981 | 0.9757 |
5.2636 | 67000 | 0.1342 | 0.1933 | 0.9768 |
5.3421 | 68000 | 0.1312 | 0.1944 | 0.9758 |
5.4207 | 69000 | 0.1329 | 0.1932 | 0.9772 |
5.4993 | 70000 | 0.1304 | 0.1908 | 0.9768 |
5.5778 | 71000 | 0.1247 | 0.1880 | 0.9772 |
5.6564 | 72000 | 0.1221 | 0.1861 | 0.9779 |
5.7349 | 73000 | 0.1225 | 0.1831 | 0.9784 |
5.8135 | 74000 | 0.1205 | 0.1854 | 0.9790 |
5.8921 | 75000 | 0.1152 | 0.1815 | 0.9789 |
5.9706 | 76000 | 0.1161 | 0.1827 | 0.9782 |
6.0492 | 77000 | 0.1151 | 0.1819 | 0.9781 |
6.1277 | 78000 | 0.113 | 0.1818 | 0.9780 |
6.2063 | 79000 | 0.1102 | 0.1823 | 0.9784 |
6.2849 | 80000 | 0.1067 | 0.1798 | 0.9780 |
6.3634 | 81000 | 0.1067 | 0.1782 | 0.9790 |
6.4420 | 82000 | 0.1116 | 0.1779 | 0.9782 |
6.5205 | 83000 | 0.107 | 0.1752 | 0.9782 |
6.5991 | 84000 | 0.1039 | 0.1739 | 0.9792 |
6.6777 | 85000 | 0.1013 | 0.1728 | 0.9789 |
6.7562 | 86000 | 0.1029 | 0.1713 | 0.9786 |
6.8348 | 87000 | 0.0972 | 0.1721 | 0.9791 |
6.9133 | 88000 | 0.0991 | 0.1703 | 0.9790 |
6.9919 | 89000 | 0.0955 | 0.1708 | 0.9791 |
7.0705 | 90000 | 0.097 | 0.1715 | 0.9786 |
7.1490 | 91000 | 0.0941 | 0.1716 | 0.9793 |
7.2276 | 92000 | 0.0922 | 0.1712 | 0.9795 |
7.3062 | 93000 | 0.0921 | 0.1706 | 0.9789 |
7.3847 | 94000 | 0.091 | 0.1691 | 0.9793 |
7.4633 | 95000 | 0.0942 | 0.1689 | 0.9787 |
7.5418 | 96000 | 0.0905 | 0.1678 | 0.9790 |
7.6204 | 97000 | 0.0871 | 0.1664 | 0.9792 |
7.6990 | 98000 | 0.0859 | 0.1666 | 0.9793 |
7.7775 | 99000 | 0.0876 | 0.1656 | 0.9785 |
7.8561 | 100000 | 0.084 | 0.1643 | 0.9795 |
7.9346 | 101000 | 0.0853 | 0.1654 | 0.9795 |
8.0132 | 102000 | 0.083 | 0.1640 | 0.9789 |
8.0918 | 103000 | 0.0849 | 0.1637 | 0.9795 |
8.1703 | 104000 | 0.0816 | 0.1626 | 0.9797 |
8.2489 | 105000 | 0.0803 | 0.1627 | 0.9796 |
8.3274 | 106000 | 0.0802 | 0.1623 | 0.9796 |
8.4060 | 107000 | 0.0808 | 0.1622 | 0.9798 |
8.4846 | 108000 | 0.0836 | 0.1632 | 0.9792 |
8.5631 | 109000 | 0.0791 | 0.1612 | 0.9796 |
8.6417 | 110000 | 0.0761 | 0.1609 | 0.9798 |
8.7202 | 111000 | 0.0782 | 0.1604 | 0.9797 |
8.7988 | 112000 | 0.0784 | 0.1604 | 0.9803 |
8.8774 | 113000 | 0.0737 | 0.1600 | 0.9804 |
8.9559 | 114000 | 0.0762 | 0.1602 | 0.9799 |
9.0345 | 115000 | 0.0764 | 0.1597 | 0.9802 |
9.1130 | 116000 | 0.0761 | 0.1600 | 0.9799 |
9.1916 | 117000 | 0.0729 | 0.1592 | 0.9797 |
9.2702 | 118000 | 0.0728 | 0.1595 | 0.9803 |
9.3487 | 119000 | 0.0722 | 0.1590 | 0.9798 |
9.4273 | 120000 | 0.0745 | 0.1591 | 0.9797 |
9.5059 | 121000 | 0.0741 | 0.1591 | 0.9798 |
9.5844 | 122000 | 0.0715 | 0.1587 | 0.9797 |
9.6630 | 123000 | 0.0719 | 0.1581 | 0.9799 |
9.7415 | 124000 | 0.0716 | 0.1578 | 0.9799 |
9.8201 | 125000 | 0.0714 | 0.1582 | 0.9801 |
9.8987 | 126000 | 0.0712 | 0.1579 | 0.9803 |
9.9772 | 127000 | 0.0707 | 0.1581 | 0.9802 |
Framework Versions
- Python: 3.12.4
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu124
- Accelerate: 0.33.0
- Datasets: 3.1.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for orhanxakarsu/sentence-distilbert-turkish
Base model
dbmdz/distilbert-base-turkish-casedEvaluation results
- Cosine Accuracy on all nli turkish devself-reported0.980