File size: 2,458 Bytes
8cc09ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
device: cuda
use_amp: false
seed: 100000
dataset_repo_id: lerobot/pusht
training:
offline_steps: 200000
online_steps: 0
online_steps_between_rollouts: 1
online_sampling_ratio: 0.5
online_env_seed: ???
eval_freq: 10000
save_freq: 20000
log_freq: 250
save_model: true
batch_size: 64
grad_clip_norm: 10
lr: 0.0001
lr_scheduler: cosine
lr_warmup_steps: 500
adam_betas:
- 0.95
- 0.999
adam_eps: 1.0e-08
adam_weight_decay: 1.0e-06
delta_timestamps:
observation.image:
- -0.1
- 0.0
observation.state:
- -0.1
- 0.0
action:
- -0.1
- 0.0
- 0.1
- 0.2
- 0.3
- 0.4
- 0.5
- 0.6
- 0.7
- 0.8
- 0.9
- 1.0
- 1.1
- 1.2
- 1.3
- 1.4
n_end_keyframes_dropped: ${policy.horizon} - ${policy.n_action_steps} - ${policy.n_obs_steps}
+ 1
eval:
n_episodes: 50
batch_size: 50
use_async_envs: false
wandb:
enable: true
disable_artifact: true
project: lerobot
notes: ''
fps: 10
env:
name: pusht
task: PushT-v0
image_size: 96
state_dim: 2
action_dim: 2
fps: ${fps}
episode_length: 300
gym:
obs_type: pixels_agent_pos
render_mode: rgb_array
visualization_width: 384
visualization_height: 384
override_dataset_stats:
observation.image:
mean:
- - - 0.5
- - - 0.5
- - - 0.5
std:
- - - 0.5
- - - 0.5
- - - 0.5
observation.state:
min:
- 13.456424
- 32.938293
max:
- 496.14618
- 510.9579
action:
min:
- 12.0
- 25.0
max:
- 511.0
- 511.0
policy:
name: diffusion
n_obs_steps: 2
horizon: 16
n_action_steps: 8
input_shapes:
observation.image:
- 3
- 96
- 96
observation.state:
- ${env.state_dim}
output_shapes:
action:
- ${env.action_dim}
input_normalization_modes:
observation.image: mean_std
observation.state: min_max
output_normalization_modes:
action: min_max
vision_backbone: resnet18
crop_shape:
- 84
- 84
crop_is_random: true
pretrained_backbone_weights: null
use_group_norm: true
spatial_softmax_num_keypoints: 32
down_dims:
- 512
- 1024
- 2048
kernel_size: 5
n_groups: 8
diffusion_step_embed_dim: 128
use_film_scale_modulation: true
num_train_timesteps: 100
beta_schedule: squaredcos_cap_v2
beta_start: 0.0001
beta_end: 0.02
prediction_type: epsilon
clip_sample: true
clip_sample_range: 1.0
num_inference_steps: 100
|