Librarian Bot: Add base_model information to model

#2
Files changed (1) hide show
  1. README.md +18 -11
README.md CHANGED
@@ -9,18 +9,25 @@ metrics:
9
  - accuracy
10
  - f1
11
  widget:
12
- - text: ["Yucaipa owned Dominick 's before selling the chain to Safeway in 1998 for $ 2.5 billion.",
13
- "Yucaipa bought Dominick's in 1995 for $ 693 million and sold it to Safeway for $ 1.8 billion in 1998."]
14
- example_title: Not Equivalent
15
- - text: ["Revenue in the first quarter of the year dropped 15 percent from the same period a year earlier.",
16
- "With the scandal hanging over Stewart's company revenue the first quarter of the year dropped 15 percent from the same period a year earlier."]
17
- example_title: Equivalent
 
 
 
 
 
 
 
18
  model-index:
19
  - name: julio-distilroberta-base-mrpc-test
20
  results:
21
  - task:
22
- name: Text Classification
23
  type: text-classification
 
24
  dataset:
25
  name: datasetX
26
  type: glue
@@ -28,12 +35,12 @@ model-index:
28
  split: validation
29
  args: mrpc
30
  metrics:
31
- - name: Accuracy
32
- type: accuracy
33
  value: 0.8063725490196079
34
- - name: F1
35
- type: f1
36
  value: 0.8566243194192378
 
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
9
  - accuracy
10
  - f1
11
  widget:
12
+ - text:
13
+ - Yucaipa owned Dominick 's before selling the chain to Safeway in 1998 for $ 2.5
14
+ billion.
15
+ - Yucaipa bought Dominick's in 1995 for $ 693 million and sold it to Safeway for
16
+ $ 1.8 billion in 1998.
17
+ example_title: Not Equivalent
18
+ - text:
19
+ - Revenue in the first quarter of the year dropped 15 percent from the same period
20
+ a year earlier.
21
+ - With the scandal hanging over Stewart's company revenue the first quarter of the
22
+ year dropped 15 percent from the same period a year earlier.
23
+ example_title: Equivalent
24
+ base_model: distilroberta-base
25
  model-index:
26
  - name: julio-distilroberta-base-mrpc-test
27
  results:
28
  - task:
 
29
  type: text-classification
30
+ name: Text Classification
31
  dataset:
32
  name: datasetX
33
  type: glue
 
35
  split: validation
36
  args: mrpc
37
  metrics:
38
+ - type: accuracy
 
39
  value: 0.8063725490196079
40
+ name: Accuracy
41
+ - type: f1
42
  value: 0.8566243194192378
43
+ name: F1
44
  ---
45
 
46
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You